Journal of Materials Science

, Volume 42, Issue 10, pp 3425–3434 | Cite as

Application of electrochemical techniques in investigation of the role of hydrogen in near-neutral pH stress corrosion cracking of pipelines

  • Y. F. ChengEmail author
  • L. Niu


It has been acknowledged that hydrogen plays a critical role in near-neutral pH stress corrosion cracking (SCC) of pipelines. However, the accurate mechanism for hydrogen involvement remains unknown. This work reviewed the applications of various electrochemical techniques towards understanding near-neutral pH SCC. The techniques reviewed include electrochemical hydrogen permeation, cyclic voltammetry, electrochemical impedance spectroscopy, electrochemical noise and scanning photo-electrochemical microscopy. The manner by which these techniques allow for the investigation of the hydrogen evolution mechanism, adsorption/desorption and permeation kinetics and hydrogen diffusion and accumulation in steel as well as the interactions between hydrogen, anodic dissolution and stress at crack tip in near-neutral pH environmental condition is described. It is anticipated that the advanced electrochemical measurement techniques provide essential tools to investigate the mechanistic aspects on hydrogen involvement in near-neutral pH stress corrosion cracking in pipelines.


Stress Corrosion Crack Acoustic Emission Signal Hydrogen Evolution Reaction Pipeline Steel Hydrogen Permeation 



This work was supported by Canada Research Chairs program and Natural Science and Engineering Research Council of Canada (NSERC).


  1. 1.
    Smialowski M (1977) In: Staehle RW (ed) Stress corrosion cracking and hydrogen embrittlement of iron based alloys. NACE, Houston, p 405Google Scholar
  2. 2.
    Mccright RD (1977) In: Staehle RW (ed) Stress corrosion cracking and hydrogen embrittlement of iron based alloys. NACE, Houston, p 306Google Scholar
  3. 3.
    Oriani RA, Hirth JP, Smialowski M (1985) In: Hirth JP, Oriani RA, Smialowski M (eds) Hydrogen degradation of ferrous alloys. Noyes Publications, Park Ridge, NJ, p 101Google Scholar
  4. 4.
    Deluccia JJ (1988) In: Raymond L (ed) Hydrogen embrittlement: prevention and control. ASTM, Philadelphia, PA, p 17CrossRefGoogle Scholar
  5. 5.
    Ohnaka N, Furutani Y (1990) Corrosion 46:129CrossRefGoogle Scholar
  6. 6.
    Iyer RN, Pickering HW (1990) Ann Rev Mater Sci 20:299CrossRefGoogle Scholar
  7. 7.
    Cheng YF, Du YL (1993) Corrosion 53:776CrossRefGoogle Scholar
  8. 8.
    Ovshinsky SR, Fetcenko MA, Venkatesan S, Chao B (1995) In: Conway BE, Jerkiewicz G (eds) Electrochemistry and materials science of cathodic hydrogen absorption and adsorption. The Electrochemical Society Proceedings Series, PV 94-21, Pennington, NJ, p 344Google Scholar
  9. 9.
  10. 10.
    National Energy Board (1996) In: Report of public inquiry concerning stress corrosion cracking on Canadian oil and gas pipelines. MH-2-95, p 7Google Scholar
  11. 11.
    Cheng YF, Yang L, King F (2000) In: Proceedings of the international pipeline conference. ASME, Calgary, p 1479Google Scholar
  12. 12.
    Parkins RN (2000) In: Corrosion’2000, paper no. 363. NACE, HoustonGoogle Scholar
  13. 13.
    King F, Jack TR, Chen W, Wang SH, Elboujdaini M, Revie W, Worthingham R, Dusek P (2001) In: Corrosion’2001, paper no. 1214. NACE, HoustonGoogle Scholar
  14. 14.
    Parkins RN, Delanty BS (1996) In: Proceedings of the ninth symposium on pipeline research, catalogue no. L51746. PRCI, p 19-1Google Scholar
  15. 15.
    Plumtree A, Lambert SB, Sutherby R (1996) In: Corrosion-deformation interactions CDI’96, European Federation of Corrosion Publications. The Institute of Materials Research, Nice, France, p 263Google Scholar
  16. 16.
    Gu B, Luo JL, Mao X (1999) Corrosion 55:96CrossRefGoogle Scholar
  17. 17.
    Mao SX, Li M (1998) J Mech Phys Solids 46:1125CrossRefGoogle Scholar
  18. 18.
    Devanathan MAV, Stachurski Z (1962) Proc Roy Soc A270:90Google Scholar
  19. 19.
    Devanathan MAV, Stachurski Z, Beck W (1963) J Electrochem Soc 110:886CrossRefGoogle Scholar
  20. 20.
    Devanathan MAV, Stachurski Z (1964) J Electrochem Soc 111:619CrossRefGoogle Scholar
  21. 21.
    Zakroczymski T (2006) Electrochim Acta 51:2261CrossRefGoogle Scholar
  22. 22.
    Weng CC, Lin GC, Chen RT (1992) Mater Sci Eng 154:51CrossRefGoogle Scholar
  23. 23.
    Ng HC, Newman RC (2005) Corros Sci 47:1197CrossRefGoogle Scholar
  24. 24.
    Kurkela M, Latanision RM (1981) Scripta Metall 15:1157CrossRefGoogle Scholar
  25. 25.
    Zhang TY, Zheng YP (1998) Acta Mater 46:5023CrossRefGoogle Scholar
  26. 26.
    Bockris JOM, Breen JMC, Nanis L (1965) J Electrochem Soc 112:1025CrossRefGoogle Scholar
  27. 27.
    Turnbull A, Saenz De Santa Maria M, Thomas ND (1989) Corros Sci 29:89CrossRefGoogle Scholar
  28. 28.
    Kato C, Grabke HJ, Egert B, Pantzner G (1984) Corros Sci 24:591CrossRefGoogle Scholar
  29. 29.
    Yan M, Weng Y (2006) Corros Sci 48:432CrossRefGoogle Scholar
  30. 30.
    King F, Chen W, Wilmott M, Fessler RR, Krist K (2000) In: Corrosion’2000, paper no. 00361. NACE, HoustonGoogle Scholar
  31. 31.
    He D, Chen W, Luo JL (2004) Corrosion 60:778CrossRefGoogle Scholar
  32. 32.
    Torres-Islas A, Salinas-Bravo VM, Albarran JL, Gonzalez-Rodriguez JG (2005) Int J Hydrogen Energy 30:1317CrossRefGoogle Scholar
  33. 33.
    Contreras A, Albiter A, Salazar M, Perez R (2005) Mater Sci Eng A 407:45CrossRefGoogle Scholar
  34. 34.
    Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons, New York, p 154Google Scholar
  35. 35.
    Gabrielli C, Grand PP, Lasia A, Perrota H (2004) J Electrochem Soc 151:1937CrossRefGoogle Scholar
  36. 36.
    Flis J, Zakroczymski T (1992) Corrosion 48:530CrossRefGoogle Scholar
  37. 37.
    Parkins RN, O’dell CS, Fesler RR (1984) Corros Sci 24:343CrossRefGoogle Scholar
  38. 38.
    Lim C, Pyun SI (1993) Electrochim Acta 38:2645CrossRefGoogle Scholar
  39. 39.
    Lim C, Pyun SI (1994) Electrochim Acta 39:363CrossRefGoogle Scholar
  40. 40.
    Yang TH, Pyun SI (1996) Electrochim Acta 41:843CrossRefGoogle Scholar
  41. 41.
    Gabrielli C, Grand PP, Lasia A, Perrota H (2004) J Electrochem Soc 151:1943CrossRefGoogle Scholar
  42. 42.
    Bruzzoni P, Carranza RM, Collet Lacoste JR, Crespo EA (1999) Electrochim Acta 44:2693CrossRefGoogle Scholar
  43. 43.
    Bosch RW (2005) Corros Sci 47:125CrossRefGoogle Scholar
  44. 44.
    Dawson JL (1996) In: Kearns JR, Scully JR (eds) Electrochemical noise measurement for corrosion applications. ASTM STP 1277, West Conshohocken, PA, p 3CrossRefGoogle Scholar
  45. 45.
    Eden DA, Rothwell AN (1992) In: Corrosion’1992, paper no. 292. NACE, HoustonGoogle Scholar
  46. 46.
    Cheng YF, Rairdan B, Luo JL (1998) J Appl Electrochem 28:1371CrossRefGoogle Scholar
  47. 47.
    Cheng YF, Wilmott M, Luo JL (1999) Corros Sci 41:1245CrossRefGoogle Scholar
  48. 48.
    Cheng YF, Wilmott M, Luo JL (1999) Appl Surf Sci 152:161CrossRefGoogle Scholar
  49. 49.
    Cheng YF, Luo JL (1999) J Electrochem Soc 146:970CrossRefGoogle Scholar
  50. 50.
    Cheng YF, Wilmott M, Luo JL (1999) Br Corros J 34:280CrossRefGoogle Scholar
  51. 51.
    Cheng YF, Luo JL (2000) Br Corros J 35:125CrossRefGoogle Scholar
  52. 52.
    Cheng YF, Wilmott M, Luo JL (2000) Electrochim Acta 45:1763CrossRefGoogle Scholar
  53. 53.
    Silva JM, Nogueira RP, De Miranda L, Huetb F (2001) J Electrochem Soc 148:E241CrossRefGoogle Scholar
  54. 54.
    Cheng YF, Luo JL (1999) Electrochim Acta 44:2947CrossRefGoogle Scholar
  55. 55.
    Cheng YF, Luo JL (2000) Appl Surf Sci 167:113CrossRefGoogle Scholar
  56. 56.
    Stimming U (1986) Electrochim Acta 31:415CrossRefGoogle Scholar
  57. 57.
    Kozlowski MR, Tyler PS, Smyrl WH, Atanasoski RT (1988) Surf Sci 194:505CrossRefGoogle Scholar
  58. 58.
    Schmuki P, Bohni H (1994) J Electrochem Soc 141:362CrossRefGoogle Scholar
  59. 59.
    Razzini G, Peraldo Bicelli L, Scrosati B (1993) Electrochim Acta 38:89CrossRefGoogle Scholar
  60. 60.
    Maffi S, Lenardi C, Bozzini B, Bicelli LP (2002) Measure Sci Technol 13:1398CrossRefGoogle Scholar
  61. 61.
    Razzini G, Cabrini M, Maffi S, Mussati G, Peraldo Bicelli L (1999) Corros Sci 41:203CrossRefGoogle Scholar
  62. 62.
    Guedes FMF, Maffi S, Razzini G, Peraldo Bicelli L, Ponciano JAC (2003) Corros Sci 45:2129CrossRefGoogle Scholar
  63. 63.
    Ningshen S, Uhlemann M, Schneider F, Khatak HS (2001) Corros Sci 43:2254CrossRefGoogle Scholar
  64. 64.
    Von Zeppelin F, Haluška M, Hirscher M (2003) Thermochim Acta 404:251CrossRefGoogle Scholar
  65. 65.
    Addach H, Berçot P, Wery M, Rezrazi M (2004) J Chromatogr A 1057:219CrossRefGoogle Scholar
  66. 66.
    Myers SM, Wampler WR, Besenbacher F, Robinson SL, Moody NR (1985) Mater Sci Eng 69:397CrossRefGoogle Scholar
  67. 67.
    Weng CC, Lin GC, Chen RT (1992) Mat Sci Eng A 154:51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.School of Chemistry and Chemical EngineeringShandong UniversityJinanChina

Personalised recommendations