Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6306–6309 | Cite as

Fluctuation induced conductivity of polycrystalline MgB2 superconductor

  • Intikhab A. Ansari
  • V. P. S. Awana
  • Rajeev Rawat
  • M. Shahabuddin
  • M. Husain
  • H. Kishan
  • A. V. Narlikar
Article

Abstract

We report fluctuation-induced conductivity (FIC) of the polycrystalline MgB2 superconductor in the presence of magnetic field. The results are described in terms of the temperature derivative of the resistivity, dρ/dT. The dρ/dT peak temperature observed for H = 0 Tesla at 39 K remains very distinct under applied fields of 6 Tesla and 8 Tesla at 22 and 20 K respectively. Aslamazov and Larkin (AL) equations are used to explain the anisotropic nature of the polycrystalline MgB2. The effective coherence length, ξp (0) determined experimentally is 55.17 Å, which roughly matches with previously reported experimental work.

Keywords

Polycrystalline Sample Temperature Derivative Boron Isotope MgB2 Superconductor Anomalous Magnetic Field 

References

  1. 1.
    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Nature 410:63CrossRefGoogle Scholar
  2. 2.
    Bouquet F, Fisher RA, Phillips NE, Hinks DG, Jorgensen JD (2001) Phys Rev Lett 87:047001CrossRefGoogle Scholar
  3. 3.
    Yeoh WK et al (2006) Supercond Sci Technol 19:596CrossRefGoogle Scholar
  4. 4.
    Chen XK, Konstantinovič MJ, Irwin JC, Lawrie DD, Franck JP (2001) Phys Rev Lett 87:157002CrossRefGoogle Scholar
  5. 5.
    Kumakura H, Takano Y, Fujii H, Togano K, Kito H, Ihara H (2001) Physics C 363:179CrossRefGoogle Scholar
  6. 6.
    Wolff Fabris F et al (2006) Supercond Sci Technol 19:405CrossRefGoogle Scholar
  7. 7.
    Jones ME, Marsh RE (1954) J Am Chem Soc 76:1434CrossRefGoogle Scholar
  8. 8.
    Kortus J, Mazin II, Belashchenko KD, Antropov VP, Boyer LL (2001) Phys Rev Lett 86:4656CrossRefGoogle Scholar
  9. 9.
    Bud’ko SL, Lapertot G, Petrovic C, Cunningham CE, Anderson N, Canfield PC (2001) Phys Rev Lett 86:1877CrossRefGoogle Scholar
  10. 10.
    Karapetrov G, Iavarone M, Kwok WK, Crabtree GW, Hinks DG (2001) Phys Rev Lett 86:4374CrossRefGoogle Scholar
  11. 11.
    Saito E, Taknenobu T, Ito T, Iwasa Y, Prassides K, Arima T (2001) J Phys: Condens Mat 13(12):L267Google Scholar
  12. 12.
    Liu AY, Mazin II, Kortus J (2001) Phys Rev Lett 87:087005CrossRefGoogle Scholar
  13. 13.
    Hirsch JE (2001) Phys Lett A 282:392CrossRefGoogle Scholar
  14. 14.
    Sidorenko AS (2002) JETP Lett 76(1):17CrossRefGoogle Scholar
  15. 15.
    Ghosh AK, Bandyopadhyay SK, Basu AN (1999) J Appl Phys 86:3247CrossRefGoogle Scholar
  16. 16.
    Li S, White T, Plevert J, Sun CQ (2004) Supercond Sci Technol 17:S589CrossRefGoogle Scholar
  17. 17.
    Stroud D (1975) Phys Rev B 12:3368CrossRefGoogle Scholar
  18. 18.
    de Lima OF (2002) Braz J Phys 32:748CrossRefGoogle Scholar
  19. 19.
    Canfield PC, Bud’ko SL, Finnermore (2003) Physica C 385:1CrossRefGoogle Scholar
  20. 20.
    Awana VPS, Rawat R, Gupta A, Isobe M, Singh KP, Vajpayee A, Kishan H, Takayama-Muromachi E, Narlikar AV (2006) Solid State Commun 139:306CrossRefGoogle Scholar
  21. 21.
    Barros FM, Vieira VN, Fabris FW, Cantão MP, Jurelo AR, Pureur P, Schaf (2004) Physica C 408:632CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Intikhab A. Ansari
    • 1
  • V. P. S. Awana
    • 2
  • Rajeev Rawat
    • 3
  • M. Shahabuddin
    • 1
  • M. Husain
    • 1
  • H. Kishan
    • 2
  • A. V. Narlikar
    • 3
  1. 1.Department of PhysicsJamia Millia Islamia (Central University)New DelhiIndia
  2. 2.National Physical LaboratoryNew DelhiIndia
  3. 3.UGC-DAE Consortium for Scientific ResearchIndoreIndia

Personalised recommendations