Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6302–6305 | Cite as

Catalytic effect of Ti5Si3 on thermal decomposition of Li3AlH6

  • Gil-Jae Lee
  • Jae-Hyeok ShimEmail author
  • Young Whan Cho
Article

Abstract

Fine Ti5Si3 powder has been mechanochemically synthesized from a mixture of elemental Ti and Si powders. When Ti5Si3 is added as a catalyst into Li3AlH6, it shows a good catalytic ability by reducing the decomposition temperature and improving the decomposition kinetics as well. Although its catalytic effect is not as good as well-known TiCl3, the use of Ti5Si3 has a benefit of releasing more hydrogen than TiCl3 during dehydrogenation. This can be explained by that Ti5Si3, unlike TiCl3, does not incur any chemical reactions with Li3AlH6 and thus remains inert during milling for dispersion.

Keywords

TiCl3 Differential Scanning Calorimetry Curve TiAl3 Mechanochemical Synthesis Decomposition Kinetic 

Notes

Acknowledgements

This work has been financially supported by the Hydrogen Energy R&D Center under the 21st Century Frontier R&D Program of the Ministry of Science and Technology, Republic of Korea.

References

  1. 1.
    Bogdanović B, Schwickardi M (1997) J Alloys Comp 253–254:1CrossRefGoogle Scholar
  2. 2.
    Balema VP, Wiench JW, Dennis KW, Pruski M, Pecharsky VK (2001) J Alloys Comp 329:108CrossRefGoogle Scholar
  3. 3.
    Majzoub EH, Gross KJ (2003) J Alloys Comp 356–357:363CrossRefGoogle Scholar
  4. 4.
    Graetz J, Reilly JJ, Johnson J, Ignatov AYu, Tyson TA (2004) Appl Phys Lett 85:500CrossRefGoogle Scholar
  5. 5.
    Haiduc AG, Stil HA, Schwarz MA, Paulus P, Greerlings JJC (2005) J Alloys Comp 393:252CrossRefGoogle Scholar
  6. 6.
    Balema VP, Balema L (2005) Phys Chem Chem Phys 7:1310CrossRefGoogle Scholar
  7. 7.
    Shim J-H, Lee G-J, Cho YW (2006) J Alloys Comp 419:176CrossRefGoogle Scholar
  8. 8.
    Sun D, Kiyobayashi T, Takeshita HT, Kuriyama N, Jensen CM (2002) J Alloys Comp 337:L8CrossRefGoogle Scholar
  9. 9.
    Íñiguez J, Yildirim T, Udovic TJ, Sulic M, Jensen CM (2004) Phys Rev B 70:060101(R)CrossRefGoogle Scholar
  10. 10.
    Løvvik OM, Opalka SM (2005) Phys Rev B 71:054103CrossRefGoogle Scholar
  11. 11.
    Resan M, Hampton MD, Lomness JK, Slattery DK (2005) Int J Hydrogen Energy 30:1417CrossRefGoogle Scholar
  12. 12.
    Shim J-H, Lee G-J, Cho YW (2006) J Alloys Comp 417:69CrossRefGoogle Scholar
  13. 13.
    Bogdanović B, Felderhoff M, Kaskel S, Pommerin A, Schlichte K, Schüth F (2003) Adv Mater 15:1012CrossRefGoogle Scholar
  14. 14.
    Smithells CJ (1976) Metals reference book. Butterworth, London, p 186Google Scholar
  15. 15.
    Yen BK, Aizawa T, Kihara J (1998) J Am Ceram Soc 81:1953CrossRefGoogle Scholar
  16. 16.
    Kudaka K, Iizumi K, Sakai T, Izumi H (2000) J Am Ceram Soc 83:2887CrossRefGoogle Scholar
  17. 17.
    Sandrock G, Gross K, Thomas G (2002) J Alloys Comp 339:299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Nano-Materials Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea

Personalised recommendations