Journal of Materials Science

, Volume 42, Issue 10, pp 3349–3352 | Cite as

Influence of the synthesis methods on the particle size of the LiVMoO6 phase

  • Margarita MilanovaEmail author
  • Reni Iordanova
  • Yanko Dimitriev
  • Krassimir Kostov
  • Sasho Vassilev
Size-Dependent Effects


The lithiated transition metal oxide LiVMoO6 has been synthesized by a novel melt quenching method that presents some advantages as compared to the classical solid-state reaction and soft-combustion synthesis. These are: the short preparation time and the possibility to control the grain size of LiVMoO6 powders. The local structure of LiVMoO6 samples prepared in different ways was characterized by IR spectral analysis. The oxidation state of Li, V, and Mo was determined by X-ray photoelectron spectroscopy.


MoO3 Li2O Glass Formation Region Brannerite Calculated Crystallite Size 


  1. 1.
    Liu R, Wang C, Jang L, Lee J (2002) Tamkang J Sci Eng 5:107Google Scholar
  2. 2.
    Amdouni N, Zarrouk H, Soulette F, Julien C (2003) J Mater Sci 13:2374Google Scholar
  3. 3.
    Liu RS, Wang CY, Drozd VA, Hu SF, Sheu HS (2005) Electrochem Solid State Lett 8(12):A650CrossRefGoogle Scholar
  4. 4.
    Michael M, Fauzi A, Prabaharan S (2000) Int J Inorg Mater 2:261CrossRefGoogle Scholar
  5. 5.
    Liang Y, Yang S, Yi Z, Sun J, Zhou Y (2005) J Mater Sci 40:5553CrossRefGoogle Scholar
  6. 6.
    Run R, Wadsley A (1966) Acta Crust 21:974CrossRefGoogle Scholar
  7. 7.
    Hanuza J, Labuda L (1981) J Raman Spectroscopy 11:231CrossRefGoogle Scholar
  8. 8.
    Hanuza J, Macalik L (1987) Specrochem Acta 43A:361CrossRefGoogle Scholar
  9. 9.
    Daturi M, Bursa G, Borel M, Leclaire A, Piagio P (1997) J Phys Chem B101:4358CrossRefGoogle Scholar
  10. 10.
    Abello L, Husson E, Repelin Y, Lucazeau G (1983) Spectrochim Acta 39A:641CrossRefGoogle Scholar
  11. 11.
    Barraclough C, Lewis J, Wyholm R (1959) J Chem Soc 3552Google Scholar
  12. 12.
    Seguin L, Figlarz M, Cavagnat R, Lassegues J (1995) Spectrochim Acta A51:1323CrossRefGoogle Scholar
  13. 13.
    Eda K (1991) J Solid State Chem 95:64CrossRefGoogle Scholar
  14. 14.
    Scofield JN (1976) J Electron Spectr Rel Phen 8:129CrossRefGoogle Scholar
  15. 15.
    Bhuvaneswari M, Selvasekarapandian S, Fujihara S, Koji S (2006) Solid State Ionics 177:121CrossRefGoogle Scholar
  16. 16.
    Atuchin VV, Kesler VG, Lisova IA, Pokrovsky LD, Pylneva NA, Yurkin AM (2003) Cryst Res Technol 38(10):896CrossRefGoogle Scholar
  17. 17.
    Zimmermann R, Claessen R, Reinert F, Steiner P, Hüfner S (1998) J Phys: Condens Matter 10:5697Google Scholar
  18. 18.
    Van Oeffelen DAG, Van Hoof JHC, Schuit GCA (1985) J Catal 95:84CrossRefGoogle Scholar
  19. 19.
    Barr T (1994) In: Modern ESCA, the principles and practice of X-ray photoelectron spectroscopy. CRS Press, Boca Raton, FlGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Margarita Milanova
    • 1
    Email author
  • Reni Iordanova
    • 1
  • Yanko Dimitriev
    • 2
  • Krassimir Kostov
    • 1
  • Sasho Vassilev
    • 3
  1. 1.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.University of Chemical Technology and MetallurgySofiaBulgaria
  3. 3.Institute of Electrochemistry and Energy SystemsSofiaBulgaria

Personalised recommendations