Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6148–6152 | Cite as

Methods for the reduction of the micropipe density in SiC single crystals

  • Jun Lin LiuEmail author
  • Ji Qiang Gao
  • Ji Kuan Cheng
  • Jian Feng Yang
  • Guan Jun Qiao
Article

Abstract

Micropipes are very harmful for SiC devices. Even one micropipe in the active area can destroy a high-voltage SiC device. Therefore, it is necessary to reduce the density of micropipes in SiC single crystals. In the present paper, we proposed methods for reducing micropipes. Restriction of screw dislocations and decrease of inclusions are the key factors to reduce the number of micropipes. (0 0 0 1) Si-face, \( (11\bar 20) \) and \( (1\bar 100) \) crystal faces acted as growth surface in different experiments. Active carbon was appended to act as carbon source. The crucible and active carbon were subjected to X-ray diffraction investigation before and after growth. The experimental results indicate that the activity of the graphite crucible was low, and it decreased with the progressing crystal growth, which increased the probability of micropipe formation. Appending active carbon can act as ample carbon source for crystal growth. The reduction of micropipes was achieved by the restrained formation of Si liquid phase. Using \( (11\bar 20) \) and \( (1\bar 100) \) crystal faces as the growth surfaces the generation of micropipes was restricted, as no new micropipe generated on the \( (11\bar 20) \) and \( (1\bar 100) \) crystal faces. At the same time, the density of edge dislocations is reduced considerably.

Keywords

Active Carbon Edge Dislocation Growth Surface Graphite Crucible Seed Crystal 

References

  1. 1.
    Bhatnagar M, Baliga BJ (1993) IEEE Trans Electron Dev 40(3):645CrossRefGoogle Scholar
  2. 2.
    Glass RC, Henshall D, Tsvetkov VF, Carter CH Jr (1997) MRS Bull 22(3):30CrossRefGoogle Scholar
  3. 3.
    Dmitriev V, Rendakova S, Kuznetsov N, Savkina N, Andreev A, Rastegaeva M, Mynbaeva M, Morozov A (1999) Mater Sci Eng B61–B62:446CrossRefGoogle Scholar
  4. 4.
    Ohtani N, Katsuno M, Fujimoto T, Aigo T, Yashiro H (2001) J Crystal Growth 226:254CrossRefGoogle Scholar
  5. 5.
    Giocondi J, Rohrer GS, Skowronski M, Balakrishna V, Augustine G, Hobgood HM, Hopkins RH (1997) J Crystal Growth 181:351CrossRefGoogle Scholar
  6. 6.
    Pirouz P (1998) Philos Mag A 78:727CrossRefGoogle Scholar
  7. 7.
    Heindl J, Strunk HP, Heydemann VD, Pensl G (1997) Phys Stat Sol A 162:251CrossRefGoogle Scholar
  8. 8.
    Nishino S, Higashino T, Tanaka T, Saraie U (1995) J Crystal Growth 147:341CrossRefGoogle Scholar
  9. 9.
    Liu J, Gao J, Cheng J, Yang J, Qiao G (2005) Mater Lett 59:2374CrossRefGoogle Scholar
  10. 10.
    Frank FC (1951) Acta Crystallogr 4:497CrossRefGoogle Scholar
  11. 11.
    Yang JW (1993) J Mater Res 8:2902CrossRefGoogle Scholar
  12. 12.
    Filip O, Epelbaum B, Bickermann M, Winnacker A (2004) J Crystal Growth 271:142CrossRefGoogle Scholar
  13. 13.
    Kato T, Nishizawa S-I, Arai K (2001) J Crystal Growth 233:219CrossRefGoogle Scholar
  14. 14.
    Hofmann D, Bickermann M, Eckstein R, Ko lbl M, Muller StG, Schmitt E, Weber A, Winnacker A (1999) J Crystal Growth 198/199:1005CrossRefGoogle Scholar
  15. 15.
    Li H, Chen XL, Ni DQ, Wu X (2003) J Crystal Growth 258:101Google Scholar
  16. 16.
    Nakamura D, Gunjishima I, Yamaguchi S, Ito T, Okamoto A, Kondo H, Onda S, Takatori K (2004) Nature 430:1009CrossRefGoogle Scholar
  17. 17.
    Skowronski M, Liu JQ, Vetter WM, Dudley M, Hallin C, Lendenmann H (2002) J Appl Phys 92:4699CrossRefGoogle Scholar
  18. 18.
    Galeckas A, Linnros J, Pirouz P (2002) Appl Phys Lett 81:883CrossRefGoogle Scholar
  19. 19.
    Kuhr TA, Liu JQ, Chung HJ, Skowronski M, Szmulowicz F (2002) J Appl Phys 92:5863CrossRefGoogle Scholar
  20. 20.
    Iwata H, Lindefelt U, Öberg S, Briddon PR (2003) Microelectron J 34:372CrossRefGoogle Scholar
  21. 21.
    Rost HJ, Dolle J, Doerschel J, Siche D, Schulz D, Wollweber J (2001) J Crystal Growth 225:317CrossRefGoogle Scholar
  22. 22.
    Drachev RV, Straty GD, Cherednichenko DI, Khlebnikov II, Sudarshan TS (2001) J Crystal Growth 233:541CrossRefGoogle Scholar
  23. 23.
    Liu J, Gao J, Cheng J, Yang J, Qiao G (2006) Diamond Related Mater 15:117CrossRefGoogle Scholar
  24. 24.
    Drowart J, De Maria G, Inghram MG (1955) J Chem Phys 29:1015CrossRefGoogle Scholar
  25. 25.
    Dudley M, Powell A, Wang S, Neudeck P, Skowronski M (1994) Appl Phys Lett 75:784CrossRefGoogle Scholar
  26. 26.
    Mantell CL (1968) Carbon and graphite handbook. John Wiley & Sons, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jun Lin Liu
    • 1
    Email author
  • Ji Qiang Gao
    • 1
  • Ji Kuan Cheng
    • 1
  • Jian Feng Yang
    • 1
  • Guan Jun Qiao
    • 1
  1. 1.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’an, ShaanxiP.R. China

Personalised recommendations