Journal of Materials Science

, Volume 42, Issue 15, pp 6197–6204 | Cite as

Thermal effects on fracture of biaxial-oriented poly(ethylene terephthalate) (BOPET) film

  • S. Hashemi
  • Y. Xu


The effect of temperature on the fracture behaviour of biaxial-oriented poly(ethylene terephthalate) (BOPET) film was studied using the Essential Work of Fracture (EWF) approach. Fracture tests were performed over the temperature range +25 to +160 °C at the speed of 5 mm/min using double edge notched tension (DENT) specimens. The length of the specimens was either along the machine direction (MD) (0°), transverse direction (TD) (90°) or at 45° to either MD or TD. Ductile tearing of the ligament region was noted over the entire temperature range in all three directions. A linear relationship was found between the specific total work of fracture and the ligament length at all test temperatures. Values of the specific essential work of fracture (we) in the MD and TD were similar and smaller than in the 45° direction. Within temperature range 25–140 °C, we showed little variation if any with respect to temperature. As expected, the Specific Non-Essential Work of Fracture (βwp) was temperature dependent. This parameter increased with increasing temperature and reached a maximum around the glass transition temperature of BOPET (Tg ≈ 80 °C). The values of the maxima are respectively 16.15, 20.38 and 17.8 MJm−3 for the 0°, 45° and 90°.


Fracture Process Zone Ethylene Terephthalate Machine Direction Ligament Length Essential Work 


  1. 1.
    Brown WF, Srawley J (1996) ASTM STP 410. American Society for Testing and Materials, Philadelphia, PAGoogle Scholar
  2. 2.
    Landes JD, Begley J (1974) ASTM STP 560. American Society for Testing and Materials, Philadelphia, PA, p 170Google Scholar
  3. 3.
    Hashemi S, O’brien D (1993) J Mater Sci 28:3977CrossRefGoogle Scholar
  4. 4.
    Hashemi S, Yuan Z (1994) Plast Rubber Compos Process Appl 21:151Google Scholar
  5. 5.
    Chan WYF, Williams JG (1994) Polymer 35:1666CrossRefGoogle Scholar
  6. 6.
    Wu J, Mai YW (1996) Polym Eng Sci 36:2275CrossRefGoogle Scholar
  7. 7.
    Karger-Kocsis J, Czigany T (1996) Polymer 37:2433CrossRefGoogle Scholar
  8. 8.
    Hashemi S (1997) J Mater Sci 32:1563CrossRefGoogle Scholar
  9. 9.
    Karger-Kocsis J, Czigany T, Moskala EJ (1997) Polymer 38:4587CrossRefGoogle Scholar
  10. 10.
    Karger-Kocsis J, Czigany T, Moskala EJ (1998) Polymer 39:3939CrossRefGoogle Scholar
  11. 11.
    Ferrer-Balas D, Maspoch ML, Martinez AB, Santanna OO (1999) Polym Bull 42:101CrossRefGoogle Scholar
  12. 12.
    Arkhireyeva A, Hashemi S, O’brein M (1999) J Mater Sci 34:5961CrossRefGoogle Scholar
  13. 13.
    Hashemi S (2000) Polym Eng Sci 40:132CrossRefGoogle Scholar
  14. 14.
    Hashemi S (2000) Polym Eng Sci 40:798CrossRefGoogle Scholar
  15. 15.
    Hashemi S (2000) Polym Eng Sci 40:1435CrossRefGoogle Scholar
  16. 16.
    Hashemi S, Williams JG (2000) Plast Rubber Compos Process Appl 29:294CrossRefGoogle Scholar
  17. 17.
    Maspoch ML, Henault V, Ferrer-Balas D, Velasco JI, Santana OO (2000) Polym Testing 19:559CrossRefGoogle Scholar
  18. 18.
    Ching ECY, Li RKY, Mai YW (2000) Poly Eng Sci 40:310CrossRefGoogle Scholar
  19. 19.
    Ferrer-Balas D, Maspoch ML Martinez AB, Santana OO (2001) Polym 42:1697CrossRefGoogle Scholar
  20. 20.
    Ferrer-Balas D, Maspoch ML, Martinez AB, Ching E, Li RKY, Mai YW (2001) Polym 42:2674Google Scholar
  21. 21.
    Hashemi S, Arkhireyeva A (2002) J Macro Sci Part B—Physics B41:863CrossRefGoogle Scholar
  22. 22.
    Wong JSS, Ferrer-Balas D, Li RKY, Mai YW, Maspoch ML, Sue HJ (2003) Acta Materialia 51:4929CrossRefGoogle Scholar
  23. 23.
    Hashemi S (2003) J Mater Sci 38:3055CrossRefGoogle Scholar
  24. 24.
    Hashemi S, Arkhireyeva A (2004) Eng Fract Mech 71:789CrossRefGoogle Scholar
  25. 25.
    Fayolle B, Tcharkhtchi A, Verdu J (2004) Polym Test 23:939CrossRefGoogle Scholar
  26. 26.
    Ho CH, Vu-Khanh T (2004) Theor Appl Fract Mec 41:103CrossRefGoogle Scholar
  27. 27.
    Zhao H, Li RKY (2006) Mech Mater 38:100CrossRefGoogle Scholar
  28. 28.
    Broberg KB (1975) J Mech Phys Solids 23:215CrossRefGoogle Scholar
  29. 29.
    European Structural Integrity Society, ESIS-TC4 Group (2001) Testing protocol for essential work of fracture, vol 28. ESIS Publications Google Scholar
  30. 30.
    Hill RH (1952) J Mech Phys Solids 4:19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.London Metropolitan Polymer CentreLondon Metropolitan UniversityLondonUK

Personalised recommendations