Journal of Materials Science

, Volume 42, Issue 15, pp 6108–6116 | Cite as

Growth behavior and surface topography of different silane coupling agents adsorbed on the silicon dioxide substrate (0001) for vapor phase deposition

  • Chujiang Cai
  • Zhigang ShenEmail author
  • Shulin Ma
  • Yushan Xing


The growth behavior and surface topography of the deposited films formed from silane coupling agents on silicon dioxide substrate (0001) via vapor phase deposition was investigated using atomic force microscopy (AFM). The surface topography of the films adsorbed on the silicon dioxide substrates is dissimilar with different silane coupling agents and different deposition conditions: (1) the films adsorbed on the silicon dioxide substrate become smoother with the increasing temperature of the silicon dioxide substrate; (2) the surface roughness of the films increases with the increasing concentration of the silane coupling agent solutions; (3) with the increasing temperature of the carrier gas, the surface roughness of the films decreases firstly and then increases; (4) with the increasing time of deposition, the surface roughness of the films increases firstly, then decreases and subsequently increases again. In experiments, the films adsorbed on the silicon dioxide substrate was rinsed ultrasonically with toluene, the results indicate that the silane coupling agent adsorbed on the substrate by physisorption and chemisorption: the chemisorbed coupling agents present island morphology and the physisorbed coupling agents are deposited on the substrate between the islands to decrease the surface roughness of the film.


Surface Topography Coupling Agent Silane Coupling Agent Silicon Dioxide Substrate Solvent Solution 



The authors acknowledge with gratitude the financial support of the National Nature Science Foundation of China (50474001) and the Joint Building Project of Beijing Education Committee (SYS10006041).


  1. 1.
    Jesionowski T, Zurawska J, Krysztafkiewicz A (2002) J Mater Sci 37:1621CrossRefGoogle Scholar
  2. 2.
    Wernera R, Krysztafkiewicza A, Decb A, Jesionowskia T (2001) Dyes Pigm 50:41CrossRefGoogle Scholar
  3. 3.
    Cardoso RJ, Shukla A, Bose A (2002) J Mater Sci 37:603CrossRefGoogle Scholar
  4. 4.
    Krysztafkiewicz A, Werner R, Lipska LK, Jesionowski T (2001) Colloids Surf A 182:65CrossRefGoogle Scholar
  5. 5.
    Sun YY, Zhang ZQ, Wong CP (2005) J Colloid Interf Sci 292:436CrossRefGoogle Scholar
  6. 6.
    Zhang GJ, Wei MK, Wu QD (2003) Mater Lett 57:4212CrossRefGoogle Scholar
  7. 7.
    Suzukia N, Itoa M, Yatsuyanagi F (2005) Polymer 46:193CrossRefGoogle Scholar
  8. 8.
    Jesionowski T, Zurawska J, Krysztafkiewicz A, Pokora M, Waszak D, Tylus W (2003) Appl Surf Sci 205:212CrossRefGoogle Scholar
  9. 9.
    Shirono H, Amano Y, Kawaguchi M, Kato T (2001) J Colloid Interf Sci 239:555CrossRefGoogle Scholar
  10. 10.
    Ettlinger M, Ladwig T, Weise A (2000) Prog Org Coat 40:31CrossRefGoogle Scholar
  11. 11.
    Jesionowski T, Krysztafkiewicz A (2001) Appl Surf Sci 172:18CrossRefGoogle Scholar
  12. 12.
    Rajinder PS, Douglas JW, Steven FD (2005) J Membr Sci 259:34CrossRefGoogle Scholar
  13. 13.
    Vrancken KC, Possemiers K, van der Voort P, Vansant EF (1995) Colloids Surf A 98:235CrossRefGoogle Scholar
  14. 14.
    Rao AV, Kulkarni MM, Amalnerkar DP, Seth T (2003) Appl Surf Sci 206:262CrossRefGoogle Scholar
  15. 15.
    Pere E, Cardy H, Latour V, Lacombe S (2005) J Colloid Interf Sci 281:410CrossRefGoogle Scholar
  16. 16.
    Wang YC, Ferrari M (2000) J Mater Sci 35:4923CrossRefGoogle Scholar
  17. 17.
    Jain SC, Tanwar VK, Dixit V, Verma SP, Samanta SB (2001) Appl Surf Sci 182:350CrossRefGoogle Scholar
  18. 18.
    Du YZ, Wood LL, Saavedra SS (2000) Mater Sci Eng C 7:161CrossRefGoogle Scholar
  19. 19.
    Carraro C, Yauw OW, Sung MM, Maboudian R (1998) J Phys Chem B 102:4441CrossRefGoogle Scholar
  20. 20.
    Lee I, Wool RP (2000) Thin Solid Films 379:94CrossRefGoogle Scholar
  21. 21.
    Rill C, Glaser A, Foisner J, Hoffmann H, Friedbacher G (2005) Langmuir 21:6289CrossRefGoogle Scholar
  22. 22.
    Popat KC, Sharma S, Johnson RW, Desai TA (2003) Surf Interf Anal 35:205CrossRefGoogle Scholar
  23. 23.
    Bierbaum K, Grunze M, Baski, AA, Chi LF, Schrepp W, Fuchs H (1995) Langmuir 11:2143CrossRefGoogle Scholar
  24. 24.
    Duchet J, Chabert B, Chapel JP, Gerard JF, Chovelon JM, Jaffrezic-Renault N (1997) Langmuir 13:2271CrossRefGoogle Scholar
  25. 25.
    Popata KC, Johnsonb RW, Desaia TA (2002) Surf Coat Technol 154:253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Chujiang Cai
    • 1
  • Zhigang Shen
    • 1
    Email author
  • Shulin Ma
    • 1
  • Yushan Xing
    • 1
  1. 1.Beijing Key Laboratory for Powder Technology Research and DevelopmentBeijing University of Aeronautics and AstronauticsBeijingP.R. China

Personalised recommendations