Journal of Materials Science

, Volume 42, Issue 15, pp 6027–6035 | Cite as

Preparation, characterization and photocatalytic activity of TiO2 / Methylcellulose nanocomposite films derived from nanopowder TiO2 and modified sol–gel titania

  • Mohammad Hossein HabibiEmail author
  • Mojtaba Nasr-Esfahani
  • Terry A. Egerton


TiO2—methylcellulose (MC) nanocomposite films processed by the sol-gel technique were studied for phocatalytic applications. Precalcined TiO2 nanopowder was mixed with a sol and heat treated. The sol suspension was prepared by first adding titanium tetra isopropoxide (Ti(OPr)4 or TTP) to a mixture of ethanol and HCl (molar ratio TTP:HCl:EtOH:H2O = 1:1.1:10:10) and then adding a 2 wt.% solution of methylcellulose (MC). The TiO2 nanopowder was dispersed in the sol and the mixture was deposited on a microscope glass slide by spin coating. Problems of film inhomogeneity and defects which caused peeling and cracking during calcinations, because of film shrinkage, were overcome by using MC as a dispersant. Effect of MC on the structure evaluation, crystallization behavior and mechanical integrity with thermal treatment up to 500 °C are followed by SEM, XRD and scratch test. XRD Scanning electron microscopy (SEM) showed that the composite films with MC have much rougher surface than films made without MC. Composite films heat treated at approximately 500 °C have the greatest hardness values. For the composite thick film, the minimum load which caused the complete coating removal was 200 g/mm2, an indication of a strong bond to the substrate. Photocatalytic activities of the composite film were evaluated through the degradation of a model pollutant, the textile dye, Light Yellow X6G (C.I. Reactive Yellow 2) and were compared with the activity of (i) a similar composite film without MC, and (ii) a TiO2 nanopowder. The good mechanical integrity make this composite film an interesting candidate for practical catalytic applications.


TiO2 Photocatalytic Activity Composite Film TiO2 Film Methylcellulose 



The authors wish to thank the University of Isfahan for financially supporting this work. We wish to thank Kermanshah Oil Refinery for their partial support.


  1. 1.
    Claus H, Faber G, Koning H (2002) Appl Microbiol Biotechnol 59:672CrossRefGoogle Scholar
  2. 2.
    Selvam K, Swaminathan K, Keo-Sang C (2003) World J Microbiol Biotechnol 19:591CrossRefGoogle Scholar
  3. 3.
    Maguire RJ (1992) Water Sci Technol 25:265Google Scholar
  4. 4.
    Zhang C, Fu C, Bishop L, Kupferle M, Fitzgerald S, Jiang H, Harmer C (1995) J Hazard Mater 41:267CrossRefGoogle Scholar
  5. 5.
    Chudgar RJ (1991) In: Kroschwits JI, Howe-Grant M (Eds) Kirk-Othmer encyclopedia of chemical technology, vol. 3. John Wiley & Sons Inc, New YorkGoogle Scholar
  6. 6.
    Pagga U, Taeger K (1994) Water Res 28:1051CrossRefGoogle Scholar
  7. 7.
    Legrini O, Oliveros E, Braun AM (1993) Chem Rev 93:671CrossRefGoogle Scholar
  8. 8.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  9. 9.
    Ollis DF, Al-Ekabi H (eds) (1993) Photocatalytic purification and treatment of water and air. Elsevier Science Publishers, AmsterdamGoogle Scholar
  10. 10.
    Turchi CS, Ollis DF (1990) J Catal 122:178CrossRefGoogle Scholar
  11. 11.
    Fox MA, Dulay M (1993) Chem Rev 93:341CrossRefGoogle Scholar
  12. 12.
    Wuhrmann K, Mechsner K, Kappeler T (1980) Euro J Appl Microbiol Biotechnol 9:325CrossRefGoogle Scholar
  13. 13.
    Buechler KJ, Noble RD, Koval CA, Jacoby WA (1999) Ind Eng Chem Res 38:892CrossRefGoogle Scholar
  14. 14.
    Konstantinou IK, Sakellarides TM, Sakkas VA, Albanis TA (2001) Environ Sci Technol 35:398CrossRefGoogle Scholar
  15. 15.
    Habibi MH, Hassanzadeh A, Mahdavi S (2005) J Photochem Photobiol A: Chem 172:89CrossRefGoogle Scholar
  16. 16.
    Habibi MH, Vosoghian H (2005) J Photochem Photobiol A: Chem 172:45CrossRefGoogle Scholar
  17. 17.
    Habibi MH, Tangestaninejad S, Yadollahi B (2001) Appl Catal B: Environ 33:57CrossRefGoogle Scholar
  18. 18.
    Yanagisawa K, Yamamoto Y, Feng Q, Yamasaki N (1998) J Mater Res 13:825CrossRefGoogle Scholar
  19. 19.
    Chan CK, Porter JF, Li YG, Guo W, Chan CM (1999) J Am Ceram Soc 83:566Google Scholar
  20. 20.
    Yu JC, Yu JG, Ho WK, Jiang ZT, Zhang LZ (2002) Chem Mater 14:3808CrossRefGoogle Scholar
  21. 21.
    Yasumori A, Shinoda H, Kameshima Y, Hayashi S, Okada K (2001) J Mater Chem 11:1253CrossRefGoogle Scholar
  22. 22.
    Woolfrey JL, Bartlett JR (1998) In: Klein LC, Pope EJA, Sakka S, Woolfrey JL (eds) Sol–gel processing of advanced materials. The American Ceramic Society, p 3Google Scholar
  23. 23.
    Mackenzie JD (1986) In: Hench LL, Urlich DR (eds) Science of ceramic chemical processing, WileyGoogle Scholar
  24. 24.
    Segal D (1997) J Mater Chem 7:1297CrossRefGoogle Scholar
  25. 25.
    Bouquin O, Blanchard N, Colombian PH (1987) In: Vincenzini P (ed) High tech ceramics. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    Livage J, Beteille F, Roux C, Chatry M, Davidson P (1998) Acta Mater 46:743CrossRefGoogle Scholar
  27. 27.
    Brinker CJ, Scherer GW (1990) Sol–gel science – the physics and chemistry of sol–gel processing. Academic PressGoogle Scholar
  28. 28.
    Scherer GW (1990) J Am Ceram Soc 73:3CrossRefGoogle Scholar
  29. 29.
    Scherer GW (1987) J Non-Cryst Solids 92:375CrossRefGoogle Scholar
  30. 30.
    Ring TA (1996) Fundamentals of ceramic powder processing and synthesis. Academic PressGoogle Scholar
  31. 31.
    German RM (1996) Sintering theory and practice. Wiley, New York, p.67Google Scholar
  32. 32.
    Arabatzis IM, Antonaraki S, Stergiopoulos T, Hiskia A, Papaconstantinou E, Bernard MC, Falaras P (2002) J Photochem Photobiol A: Chem 149:237CrossRefGoogle Scholar
  33. 33.
    Keshmiri M, Troczynski T, Mohseni M (2004) Appl Catal B: Environ 53:209CrossRefGoogle Scholar
  34. 34.
    Bange K, Ottermann CR, Anderson O, Jeschkowsky U, Laube M, Feile R (1991) Thin Solid Films 197:279CrossRefGoogle Scholar
  35. 35.
    Hossein-Babaei F, Keshmiri M, Kakavand M, Troczynski T (2005) Sensor Actuator B: Chem 110:28CrossRefGoogle Scholar
  36. 36.
    Chatterjee D, Dasgupta S (2005) J Photochem Photobiol C: Photochem Rev 6:186CrossRefGoogle Scholar
  37. 37.
    Chen W, Zhang J, Fang Q, Li S, Wu J, Li F, Jiang K (2004) Sensor Actuator B 100(1–2):195CrossRefGoogle Scholar
  38. 38.
    Habibi MH, Talebian N (2007) Dyes Pigments 73:186CrossRefGoogle Scholar
  39. 39.
    Habibi MH, Talebian N (2005) Acta Chim Slov 52:53Google Scholar
  40. 40.
    Hassanzadeh A, Habibi MH, Zeini Isfahani A (2004) Acta Chim Slov 51:507Google Scholar
  41. 41.
    Caruso RA, Schattka JH (2000) Adv Mater 24:1921CrossRefGoogle Scholar
  42. 42.
    Lewis JA (2000) J Am Ceram Soc 83:2341CrossRefGoogle Scholar
  43. 43.
    Okada K, Yamamoto N, Kameshima Y, Yasumori A (2001) J Am Ceram Soc 84:1591CrossRefGoogle Scholar
  44. 44.
    Chen W, Tao X (2005) J Am Ceram Soc 88:2998CrossRefGoogle Scholar
  45. 45.
    Mazzarino I, Piccinini P, Spinelli L (1999) Catal Today 48:315CrossRefGoogle Scholar
  46. 46.
    Harizanov O, Harizanova A (2000) Solar Energy Mater Solar Cells 63:185CrossRefGoogle Scholar
  47. 47.
    Yang TC-K, Wang S-F, Tsai SH-Y, Lin S-Y (2001) Appl Catal B: Environ 30:293CrossRefGoogle Scholar
  48. 48.
    Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2001) Appl Catal B: Environ 31:145CrossRefGoogle Scholar
  49. 49.
    Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C: Photochem Rev 1:1–21CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mohammad Hossein Habibi
    • 1
    Email author
  • Mojtaba Nasr-Esfahani
    • 1
  • Terry A. Egerton
    • 2
  1. 1.Department of ChemistryUniversity of IsfahanIsfahanIran
  2. 2.School of Chemical Engineering and Advanced MaterialsUniversity of Newcastle upon TyneNewcastleUK

Personalised recommendations