Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6222–6233 | Cite as

Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure

  • Sirong Zhu
  • D. D. L. ChungEmail author
Article

Abstract

A theory is provided for piezoresistivity in carbon fiber reinforced cement (with and without embedded steel reinforcing bars) under flexure (three-point bending). The phenomenon, which involves the reversible increase of the tension surface electrical resistance and the reversible decrease of the compression surface electrical resistance upon flexure, allows strain sensing. The theory is based on the concept that the piezoresistivity is due to the slight pull-out of crack-bridging fibers during crack opening and the consequent increase in the contact electrical resistivity of the fiber-matrix interface. This work is an extension of prior theory, which concerns the effect of uniaxial loading on the volume resistance. The extension requires modeling the surface resistance and its change under flexure. The theoretical results on the piezoresistivity, both with and without rebar, are in good agreement with prior experimental results. Differences between theoretical and experimental results are probably due to minor damage and rebar debonding during flexure.

Keywords

Carbon Fiber Uniaxial Compression Surface Electrical Resistance Surface Resistance Compression Side 

Notes

Acknowledgements

This work was supported in part by the Key Project of National Natural Science Foundation of China under grant No. 50238040. The authors appreciate technical discussion with Dr. Sihai Wen of University at Buffalo, State University of New York.

References

  1. 1.
    Chen P-W, Chung DDL (1996) Compos Part B – Eng 27B:11CrossRefGoogle Scholar
  2. 2.
    Chung DDL (2002) J Intel Mat Syst Str 13(9):599CrossRefGoogle Scholar
  3. 3.
    Wen S, Chung DDL (2003) Adv Cem Res 15(3):119CrossRefGoogle Scholar
  4. 4.
    Chung DDL (2002) J Mater Eng Perform 11(2):194CrossRefGoogle Scholar
  5. 5.
    Wen S, Chung DDL (2001) Cem Concr Res 31(2):297CrossRefGoogle Scholar
  6. 6.
    Wen S, Chung DDL (2000) Cem Concr Res 30(8):1289CrossRefGoogle Scholar
  7. 7.
    Fu X, Lu W, Chung DDL (1998) Carbon 36(9):1337CrossRefGoogle Scholar
  8. 8.
    Fu X, Chung DDL (1997) Cem Concr Res 27(9):1313CrossRefGoogle Scholar
  9. 9.
    Chen P-W, Chung DDL (1993) Smart Mater Struct 2:22CrossRefGoogle Scholar
  10. 10.
    Wen S, Chung DDL (2001) Cem Concr Res 31(4):665CrossRefGoogle Scholar
  11. 11.
    Wen S, Chung DDL (2005) ACI Mater J 102(4):244Google Scholar
  12. 12.
    Sun M, Mao Q, Li Z (1998) J Wuhan Univ Technol, Mater Sci Ed 13(3):58Google Scholar
  13. 13.
    Mao Q, Zhao B, Sheng D, Li Z (1996) J Wuhan Univ Technol 11(3):41Google Scholar
  14. 14.
    Reza F, Batson GB, Yamamuro JA, Lee JS (2003) J Mater Civil Eng 15(5):476CrossRefGoogle Scholar
  15. 15.
    Wu Y, Bing C, Keru W (2003) Mechanics and Material Engineering for Science and Experiments 172Google Scholar
  16. 16.
    Yao W, Chen B, Wu K (2003) J Mater Sci Technol 19(3):239Google Scholar
  17. 17.
    Wen S, Chung DDL (2006) Carbon 44(8):1496CrossRefGoogle Scholar
  18. 18.
    Bontea D-M, Chung DDL, Lee GC (2000) Cem Concr Res 30(4):651CrossRefGoogle Scholar
  19. 19.
    Fu X, Chung DDL (1996) Cem Concr Res 26(1):15CrossRefGoogle Scholar
  20. 20.
    Chung DDL (2003) Mater Sci Eng R 42(1):1CrossRefGoogle Scholar
  21. 21.
    Wen S, Chung DDL Cem. Conc r. Res., in pressGoogle Scholar
  22. 22.
    Fu X, Chung DDL (1995) Cem Concr Res 25(7):1391CrossRefGoogle Scholar
  23. 23.
    Chung DDL (2005) J Mater Civil Eng 17(4):379CrossRefGoogle Scholar
  24. 24.
    Wen S, Chung DDL (2006) J Mater Civil Eng 18(3):355CrossRefGoogle Scholar
  25. 25.
    Bisschop J, Van Mier JGM (2002) Cem Concr Res 32:279CrossRefGoogle Scholar
  26. 26.
    Fu X, Chung DDL (1998) ACI Mater J 95(6):725Google Scholar
  27. 27.
    Fu X, Chung DDL (1997) Compos Interface 4(4):197Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Engineering Structures and Mechanics, School of ScienceWuhan University of TechnologyWuhanChina
  2. 2.Composite Materials Research LaboratoryUniversity at Buffalo State University of New YorkBuffaloUSA

Personalised recommendations