Journal of Materials Science

, Volume 42, Issue 15, pp 6041–6045 | Cite as

Indium doped silver oxide thin films prepared by reactive electron beam evaporation technique: electrical properties

  • Aryasomayajula SubrahmanyamEmail author
  • Ullash Kumar Barik


The indium doped silver oxide thin films have been prepared at 275 °C on soda lime glass and silicon substrates by reactive electron beam evaporation technique; the deposition rate has been varied (by varying the electron beam current) in the range 0.94–16.88 nm/s keeping the oxygen flow rate constant. These films are polycrystalline. The electrical resistivity for these films decreases with increasing deposition rate. The AIO films prepared with a deposition rate of 5.7 nm/s show near p-type conductivity. The work function has been measured on these films by contact potential method using Kelvin Probe. The surface morphology of the films has been evaluated using atomic force microscopy (AFM). The roles of indium doping and oxygen vacancies in the electrical properties of these films have been analyzed; the ionized impurity scattering is the dominant mechanism controlling the electrical conduction in these films.


Hall Mobility Indium Oxide Transparent Conducting Oxide Silver Oxide Oxygen Flow Rate 



The authors gratefully acknowledge the help of Mr Schifmann and Dr Bernd Szyszka of the Fraunhofer Institute for Surface Engineering and Thin Films, Braunschweig, Germany for AFM data.


  1. 1.
    Kawazoe H, Yanagi H, Ueda K, Hosono H (2000) M R S Bull 25:28CrossRefGoogle Scholar
  2. 2.
    Fortiu E, Weichman FL (1964) Phys Stat Solidi A 5:515CrossRefGoogle Scholar
  3. 3.
    Barik UK, Subrahmanyam A (2000) In: Kumar V (ed) Proceedings of 11 international workshop on physics of semiconductor devices II. Allied Publishers, New Delhi, pp 1271–1274Google Scholar
  4. 4.
    Barik UK, Srinivasan S, Nagendra CL, Subramanyam A (2003) Thin Solid Films 429:129CrossRefGoogle Scholar
  5. 5.
    Asbalter J, Subrahmanyam A (2000) J Vac Sci Technol 18:1CrossRefGoogle Scholar
  6. 6.
    Subrahmanyam A, Barik UK (2005) J Phys Chem Solids 66:817CrossRefGoogle Scholar
  7. 7.
    Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) Nature 389:939CrossRefGoogle Scholar
  8. 8.
    Shariari DY, Erdman N, Haug UTM, Zarzyczny MC, Marks LD, Poeppelmeier KR (2003) J Phys Chem Solids 64:1437CrossRefGoogle Scholar
  9. 9.
    Clayton JE, Cann DP, Ashmore N (2002) Thin Solid Films 411:140CrossRefGoogle Scholar
  10. 10.
    Wichainchai A, Dordor P, Doumerc JP, Marquestaut E, Pouchard M, Hagenmuller P (1988) J Solid State Chem 74:126CrossRefGoogle Scholar
  11. 11.
    Otabe T, Ueda K, Kudoh A, Hosono H, Kawazoe H (1998) Appl Phys Lett 72:1036CrossRefGoogle Scholar
  12. 12.
    Tate J, Jayaraj MK, Draeseke AD, Ulbrich T, Sleight AW, Vanaja KA, Nagarajan R, Wager JF, Hoffman RL (2002) Thin Solid Films 411:119CrossRefGoogle Scholar
  13. 13.
    Schroder DK (1990) Semiconductor material and device characterization, 1st edn. John Wiley & Sons, Inc., New York, p 30CrossRefGoogle Scholar
  14. 14.
    Suresh Kumar C, Subrahmanyam A, Majhi J (1996) Rev Sci Instrum 67:805CrossRefGoogle Scholar
  15. 15.
    Takahashi T, Nakabayashi H, Terasawa T, Masugata K (2002) J Vac Sci Technol A 20:1205CrossRefGoogle Scholar
  16. 16.
    Bellingham JR, Phillips WA, Atkins CJ (1991) Thin Solid Films 195:23CrossRefGoogle Scholar
  17. 17.
    Manivannan P, Subrahmanyam A (1993) J Phys D Appl Phys 26:1510CrossRefGoogle Scholar
  18. 18.
    Shannon RD, Rogers DB, Prewitt CT (1971) Inorg Chem 10:713CrossRefGoogle Scholar
  19. 19.
    Putely EH (1960) Hall effect and related phenomena. Butterworths, London, p 110Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Aryasomayajula Subrahmanyam
    • 1
    Email author
  • Ullash Kumar Barik
    • 1
  1. 1.Semiconductor Physics Laboratory, Department of PhysicsIndian Institute of Technology MadrasChennai India

Personalised recommendations