Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 5991–5998 | Cite as

Preparation of luminescent nanosized NaEu(MoO4)2 incorporated in amorphous matrix originated from zeolite

  • Shigeru Suzuki
  • Munenori Ryo
  • Tetsushi Yamamoto
  • Takao Sakata
  • Shozo Yanagida
  • Yuji Wada
Article

Abstract

Novel luminescent material has been prepared by the reaction of Eu3+ and molybdate species in the matrix of faujasite (FAU) type zeolite X and successive calcination. Eu3+ exchanged FAU was reacted with MoO3 in the solid-state at 723 K, giving a precursor. By calcining it at 1073 K, different crystalline phases were derived depending on MoO3-loading levels. Scheelite type crystal of NaEu(MoO4)2 was formed at high MoO3-loading levels, whereas europium sodalite was formed at low loading levels. For the former sample, X-ray diffraction analysis and transmission electron microscopy revealed that the nanosized NaEu(MoO4)2 was dispersed homogeneously within amorphous aluminosilicate matrix originated from FAU. The amorphous particles containing NaEu(MoO4)2 maintained the original morphology, which the starting FAU particles possessed. The emission intensity of nanosized NaEu(MoO4)2 in the matrix was one order higher than that of europium sodalite. The emission lifetime of nanosized NaEu(MoO4)2 (0.39 ms) in the matrix was longer than that of bulk NaEu(MoO4)2 (0.35 ms) fabricated by conventional solid-state processes.

Keywords

Zeolite MoO3 Scheelite Scanning Transmission Electron Microscope Amorphous Matrix 

Notes

Acknowledgement

The authors would like to thank the members of Analytical Laboratory of Tokan Material Technology Co., Ltd. for help with the chemical analysis. This work was supported by a Grant-in-Aid for Scientific Research (No. 12450345) and a Grant-in-Aid for Scientific Research Areas (417) (No. 15033245) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese Government.

References

  1. 1.
    Jüstel T, Nikol H, Ronda C (1998) Angew Chem Int Ed 37:3085CrossRefGoogle Scholar
  2. 2.
    Vecht A, Gibbons C, Davies D, Jing XP, Marsh P, Ireland T, Silver J, Newport A, Barber D (1999) J Vac Sci Technol B 17:750CrossRefGoogle Scholar
  3. 3.
    Feldmann C, Jüstel T, Ronda C, Schmidt PJ (2003) Adv Funct Mater 13:511CrossRefGoogle Scholar
  4. 4.
    McKittrick J, Bacalski CF, Hirata GA, Hubbard KM, Pattillo SG, Salazar KV, Trkula M (2000) J Am Ceram Soc 83:1241CrossRefGoogle Scholar
  5. 5.
    Ye T, Zhao GW, Zhang WP, Xia SD (1997) Mater Res Bull 32:501CrossRefGoogle Scholar
  6. 6.
    Lee MH, Oh SG, Yi SC (2000) J Colloid Interface Sci 226:65CrossRefGoogle Scholar
  7. 7.
    Bhargava RN, Gallagher D, Welker T (1994) J Lumin 61:275CrossRefGoogle Scholar
  8. 8.
    Bhargava RN (1996) J Lumin. 70:85CrossRefGoogle Scholar
  9. 9.
    Weller H (1993) Angew Chem 105:43CrossRefGoogle Scholar
  10. 10.
    Alivisatos AP (1996) Science 271:933CrossRefGoogle Scholar
  11. 11.
    Capobianco JA, Vetrone F, D’Alesio T, Tessari G, Speghini A, Bettinelli M (2000) Phys Chem Chem Phys 2:3203CrossRefGoogle Scholar
  12. 12.
    Wada Y, Okubo T, Ryo M, Nakazawa T, Hasegawa Y, Yanagida S (2000) J Am Chem Soc 122:8583CrossRefGoogle Scholar
  13. 13.
    Ryo M, Wada Y, Okubo T, Nakazawa T, Hasegawa Y, Yanagida S (2002) J Mater Chem 12:1748CrossRefGoogle Scholar
  14. 14.
    Ryo M, Wada Y, Okubo T, Hasegawa Y, Yanagida S (2003) J Phys Chem B 107:11302CrossRefGoogle Scholar
  15. 15.
    Charnell JF (1971) J Crystal Growth 8:291CrossRefGoogle Scholar
  16. 16.
    Schoeman BJ, Sterte J, Otterstedt JE (1994) Zeolites 14:110CrossRefGoogle Scholar
  17. 17.
    Persson AE, Schoeman BJ, Sterte J, Otterstedt JE (1994) Zeolites 14:557CrossRefGoogle Scholar
  18. 18.
    Baker MD, Olken MM, Ozin GA (1988) J Am Chem Soc 110:5709CrossRefGoogle Scholar
  19. 19.
    Kynast U, Weiler V (1994) Adv Mater 6:937CrossRefGoogle Scholar
  20. 20.
    Rosa ILV, Serra OA, Nassar EJ (1997) J Lumin 72:532CrossRefGoogle Scholar
  21. 21.
    Alvaro M, Fornes V, Garcia S, Scaiano JC (1998) J Phys Chem B 102:8744CrossRefGoogle Scholar
  22. 22.
    Borgmann C, Sauer J, Jüstel T, Kynast U, Schu¨th F (1999) Adv Mater 11:45CrossRefGoogle Scholar
  23. 23.
    Chen W, Samynaiken R, Huang Y (2000) J Appl Phys 88:16Google Scholar
  24. 24.
    Rocha J, Carlos LD, Rainho JP, Lin Z, Ferreira P, Almedia RM (2000) J Mater Chem 10:1371CrossRefGoogle Scholar
  25. 25.
    Jüstel T, Wiechert DU, Lau C, Sendor D, Kynast U (2001) Adv Funct Mater 11:105CrossRefGoogle Scholar
  26. 26.
    Sendor D, Kynast U (2002) Adv Mater 14:1570CrossRefGoogle Scholar
  27. 27.
    Dexpert-Ghys J, Picard C, Taurines A (2001) J Inclusion Phenom Macrocyclic Chem 39:261CrossRefGoogle Scholar
  28. 28.
    Ananias D, Ferreira A, Rocha J, Ferreira P, Rainho JP, Morais C, Carlos D (2001) J Am Chem Soc 123:5735CrossRefGoogle Scholar
  29. 29.
    Schmechel R, Kennedy M, von Seggern H, Winkler H, Kolbe M, Fischer RA, Xaomao L, Benker A, Winterer M, Hahn H (2001) J Appl Phys 89:1679CrossRefGoogle Scholar
  30. 30.
    Hazenkamp MF, van der Veen AMH, Feiken N, Blasse G (1992) J Chem Soc Faraday Trans 88:141CrossRefGoogle Scholar
  31. 31.
    Thoret J, Man PP, Fraissard J (1995) J Chem Soc Faraday Trans 91:1037CrossRefGoogle Scholar
  32. 32.
    Schieber M, Holmes L (1964) J Appl Phys 35:1004CrossRefGoogle Scholar
  33. 33.
    Macalik L, Hanuza J, Macalik B, Strek W (1996) Eur J Solid State Inorg Chem 33:397Google Scholar
  34. 34.
    Wei-Wei Z, Mei X, Wei-Ping Z, Min Y, Ze-Ming Q, Shang-Da X, Garapon C (2003) Chem Phys Lett 376:318CrossRefGoogle Scholar
  35. 35.
    Capobianco JA, D’Aleso T, Tessari G, Speghini A, Bettinelli M (2000) Phys Chem Chem Phys 2:3203CrossRefGoogle Scholar
  36. 36.
    Hase T, Kano T, Nakazawa E, Yamamoto H (1990) Adv Electron Electron Phys 79:271CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Shigeru Suzuki
    • 1
  • Munenori Ryo
    • 2
  • Tetsushi Yamamoto
    • 2
  • Takao Sakata
    • 3
  • Shozo Yanagida
    • 4
  • Yuji Wada
    • 2
  1. 1.Tokan Material TechnologyOsaka-shiJapan
  2. 2.Material and Life Science, Graduate School of EngineeringOsaka UniversitySuitaJapan
  3. 3.Research Center for Ultra-High Voltage Electron MicroscopyOsaka UniversityIbarakiJapan
  4. 4.Center for Advanced Science and InnovationOsaka UniversitySuitaJapan

Personalised recommendations