Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6205–6211 | Cite as

An effective approach to activate 316L stainless steel for biomimetic coating of calcium phosphate: electrochemical pretreatment

  • Qiyi Zhang
  • Yang Leng
  • Renlong Xin
  • Chaoyuan Wang
  • Xiong Lu
  • Jiyong Chen
Article

Abstract

In this paper, an electrochemical (EC) method to activate 316L stainless steel (denoted as 316L) surface for biomimetic calcium phosphate (Ca–P) coatings was reported. After EC treatment, a gel-like Ca–P film with a thickness of 150 nm was generated on the stainless steel surface after treatment, which was composed of amorphous phase of calcium phosphate with a large number of crystal nuclei of octacalcium phosphate (OCP) inside. This Ca–P thin film is the main factor that causes Ca–P formation under biomimetic condition. The effectiveness of EC treatment was also compared with alkali heat (AH) pretreatment in producing biomimetic coating on 316L. A uniform Ca–P coating formed on EC treated samples after samples were immersed in saturated calcium solution (SCS) for several hours, while only some island-like deposits were found on the sample surface with AH treatment followed by immersion in SCS for several days. This work has explored a novel and effective pretreatment method to activate 316L implant surface, which can be expected to be applied to activate other metal implants.

Keywords

Calcium Phosphate Amorphous Calcium Phosphate Stainless Steel Surface Calcium Phosphate Coating Pretreated Surface 

Notes

Acknowledgements

This work was financially supported by Natural Science Foundation of China (C010515/30500126), and Research Grants Council of Hong Kong (No. HKUST 6037/02E). The characterization of the samples was conducted in the Materials Characterization & Preparation Facility of the Hong Kong University of Science and Technology.

Reference

  1. 1.
    Sivakumar M, Rajeswari S, Thulasiraman V (1996) J Mater Sci Lett 15:2192CrossRefGoogle Scholar
  2. 2.
    Gibbons DF (1982) Materials for orthopedic joint prosthesis. CRC Press, Boca Raton (FL), p 116Google Scholar
  3. 3.
    Jacobs JJ, Gilbert JL, Urban RM (1998) J Bone Joint Surg 80A:268CrossRefGoogle Scholar
  4. 4.
    de Groot K, Geesink R, Klein CPAT, Serekian P (1987) J Biomed Mater Res 21:1375CrossRefGoogle Scholar
  5. 5.
    Liu DM, Chou HM, Wu JD (1994) J Mater Sci Mater Med 5:147CrossRefGoogle Scholar
  6. 6.
    Geesink RGT (1990) Clin Orthop 261:39Google Scholar
  7. 7.
    Shirkhanzadeh M (1998) J Mater Sci: Mater Med 9:67Google Scholar
  8. 8.
    Ban S, Maruno S (1998) Biomaterials 19:1245CrossRefGoogle Scholar
  9. 9.
    Manso M, Jimenez C, Morant C, Herrero P, Martinez-Duart JM (2000) Biomaterials 21:1755CrossRefGoogle Scholar
  10. 10.
    Sridhar TM, Mudali UK, Subbaiyan M (2003) Corrosion Sci 45:237CrossRefGoogle Scholar
  11. 11.
    Kannan S, Balamurugan A, Rajeswari S (2003) Mater Lett 57:2382CrossRefGoogle Scholar
  12. 12.
    Sridhar TM, Mudali UK, Subbaiyan M (2003) Corrosion Sci 45:2337CrossRefGoogle Scholar
  13. 13.
    Cotell CM (1993) Appl Surf Sci 69:140CrossRefGoogle Scholar
  14. 14.
    Liu DM, Yang Q, Trocaynski T (2002) Biomaterials 23:691CrossRefGoogle Scholar
  15. 15.
    Gross KA, Chai CS, Kannangara GSK, Bin-Nissan B, Hanley L (1998) J Mater Sci Mater Med 9:834Google Scholar
  16. 16.
    Liu DM, Troczynski T, Tseng WJ (2001) Biomaterials 21:1721CrossRefGoogle Scholar
  17. 17.
    Jonasova L, Muller FA, Helebrant A, Strnad J, Greil P (2004) Biomaterials 25:1187CrossRefGoogle Scholar
  18. 18.
    Kim H-M, Miyaji F, Kokubo T, Nishiguchi S, Nakamura T (1999) J Biomed Mater Res 45:100CrossRefGoogle Scholar
  19. 19.
    Barrere F, van Blitterswijk CA, de Groot K, Layrolle P (2002) Biomaterials 23:2211CrossRefGoogle Scholar
  20. 20.
    Li P, Ducheyne P (1998) J Biomed Mater Res 41:341CrossRefGoogle Scholar
  21. 21.
    Lin FH, Hsu YS, Lin SH, Sun JS (2002) Biomaterials 23:4029CrossRefGoogle Scholar
  22. 22.
    Habibovic P, Barrere F, Blitterswijk CA, de Groot K, Layrolle P (2002) J Am Ceram Soc 85:517CrossRefGoogle Scholar
  23. 23.
    Kim HM, Miyaji F, Kokubo T, Nakamura T (1997) J Mater Sci Mater Med 8:341CrossRefGoogle Scholar
  24. 24.
    Wen HB, de Wijin JR, Cui FZ, de Groot K (1998) Biomaterials 19:215CrossRefGoogle Scholar
  25. 25.
    Wen HB, Liu Q, de Wijin JR, de Groot K, Cui FZ (1998) J Mater Sci Mater Med 9:121CrossRefGoogle Scholar
  26. 26.
    Kim HM, Miyaji F, Kokubo T, Nakamura T (1996) J Biomed Mater Res 32:409CrossRefGoogle Scholar
  27. 27.
    Zhang Q, Leng Y (2005) Biomaterials 26:3853CrossRefGoogle Scholar
  28. 28.
    Eanes ED (2001) In: Chow LC, Eanes ED (eds) Octacalcium phosphate. Monagr Oral Sci V 18, Basel, Karger, New York, pp 130–147Google Scholar
  29. 29.
    Lu X, Leng Y (2005) Biomaterials 26:1097CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Qiyi Zhang
    • 1
  • Yang Leng
    • 3
  • Renlong Xin
    • 3
  • Chaoyuan Wang
    • 4
  • Xiong Lu
    • 5
  • Jiyong Chen
    • 2
  1. 1.College of Chemical EngineeringSichuan UniversityChengduChina
  2. 2.Engineering Research Center in BiomaterialsSichuan UniversityChengduChina
  3. 3.Department of Mechanical EngineeringThe Hong Kong University of Science and TechnologyKowloon, Hong KongChina
  4. 4.College of Life ScienceSouth-central University for NationalitiesWuhanChina
  5. 5.School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina

Personalised recommendations