Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6310–6315 | Cite as

Abnormal oxidation behavior of YBa2Cu3O7−δ ceramics

  • Evelyne Cazy
  • Ali Khalfi
  • David S. Smith
  • Marc Huger
  • Jean Pierre Bonnet
Article

Abstract

The influence of sample thickness and cooling rate on the oxidation kinetics of dense small grain YBa2Cu3O7−δ ceramics is presented. The oxidation behavior is strongly dependent on the phase type exhibited by the material. At high temperature, in the tetragonal phase, the oxygen stoichiometry of the ceramic core is dependent on the diffusion length and isothermal treatments improve the overall. Value increase in the sample thickness decreases the oxygen content. At low temperature, in the orthorhombic phase, the oxidation during cooling becomes very fast and the sample thickness is not observed to be a limiting parameter. An ultrasonic determination of Young’s modulus as a function of temperature shows that this behavior cannot be related to the formation of microcracks. The improvement in oxidation observed in this temperature range is considered as characteristic of a very fast diffusion of oxygen along the grain boundaries, which is enhanced below the tetragonal to orthorhombic transition by the stresses resulting from anisotropic thermal contraction.

Keywords

Oxygen Uptake Sample Thickness Oxidation Kinetic Isothermal Treatment Oxygen Stoichiometry 

Notes

Acknowledgements

This work was supported by the French cooperative research program “CPR courants forts dans les supraconducteurs à hauts TC”. The authors are very grateful to the CNRS, the Ministère de l’Enseignement Supérieure et de la Recherche, Alcatel-Alsthom-Recherche and the Electricité de France.

References

  1. 1.
    Specht ED, Sparks CJ, Dhere AG, Brynestad J, Cavin OB, Kroeger DM, Pye HA (1988) Phys Rev B37:7426CrossRefGoogle Scholar
  2. 2.
    Kogachi M, Nakanishi S, Nakahigashi K, Minamigawa S, Sasakura H, Fukuoka N, Yanase A (1988) Jpn J Appl Phys 27:L1228CrossRefGoogle Scholar
  3. 3.
    Gallagher PK (1987) Adv Ceram Mater 2:632CrossRefGoogle Scholar
  4. 4.
    Lindemer TB, Huntley JF, Gates JE, Sutton AL, Brynestad J, Hubbard CR, Gallagher PK (1989) J Am Ceram Soc 72:1775CrossRefGoogle Scholar
  5. 5.
    Rothman SJ, Chen N, Routfort JL (1991) 3rd International symposium on high temperature superconductors: processing and microstructure property relationships. TMS/AIME, USAGoogle Scholar
  6. 6.
    Brodsky MB (1991) MRS Bull May 31Google Scholar
  7. 7.
    Kroeger DM, Choudhury A, Brynestad J, Williams RK (1988) J Appl Phys 64:331CrossRefGoogle Scholar
  8. 8.
    Heintz JM, Magro C, Frohlich J, Dordor P, Bonnet JP (1990) Eur J Solid State Inorg Chem 27:703Google Scholar
  9. 9.
    Heintz JM, Magro C, Bonnet JP (1992) J Phys III France 2:169CrossRefGoogle Scholar
  10. 10.
    Lagraff JR, Payne DA (1993) Physica C 212:478CrossRefGoogle Scholar
  11. 11.
    Loehman RE, Hammetter WF, Venturini EL, Moore RH, Gerstle FP (1989) J Am Ceram Soc 72:669CrossRefGoogle Scholar
  12. 12.
    Goodman P, Grigg M, Opat G, Peele A, Drennan J, Rohan P (1989) J Am Ceram Soc 72:856CrossRefGoogle Scholar
  13. 13.
    Smith DS, Suasmoro S, Gault C (1989) J Eur Ceram Soc 5:81CrossRefGoogle Scholar
  14. 14.
    Gotor FJ, Pellerin N, Odier P, Cazy E, Bonnet JP, Fert AR, Ayache J (1995) Physica C 247:252CrossRefGoogle Scholar
  15. 15.
    Mizusaki J, Tagawa H, Hayakawa K, Hirano K (1995) J Am Ceram Soc 78:1781CrossRefGoogle Scholar
  16. 16.
    Nakahara N, Fisanick GJ, Yan MF, Vanpover RB, Boone T (1987) J Cryst Growth 85:639CrossRefGoogle Scholar
  17. 17.
    Suasmoro S, Smith DS, Lejeune M, Huger M, Gault C (1992) J Mater Res 7:1629CrossRefGoogle Scholar
  18. 18.
    Huger M (1992) Thesis, Université de Limoges, FranceGoogle Scholar
  19. 19.
    Kishio K, Suzuki K, Hasegawa T, Yamamoto T, Kitazawa K, Fueki F (1989) J Solid State Chem 82:192CrossRefGoogle Scholar
  20. 20.
    Tu KN, Yeh NC, Park SI, Tsuei CC (1989) Phys Rev B39:304CrossRefGoogle Scholar
  21. 21.
    Lagraff JR, Payne DA (1993) Physica C 212:470CrossRefGoogle Scholar
  22. 22.
    Lagraff JR, Payne DA (1993) Physica C 212:487CrossRefGoogle Scholar
  23. 23.
    Song Y, Cheng XD, Gaines JR (1990) J Mater Res 5:27CrossRefGoogle Scholar
  24. 24.
    Maier J, Murugaraj P, Pfundtner G (1990) Solid State Ionics 40/41:802CrossRefGoogle Scholar
  25. 25.
    Carslaw HS, Jaeger JC (1947) Conduction of heat in solids. Clarendon Press, OxfordGoogle Scholar
  26. 26.
    Shaw TM, Shinde SL, Dimos D, Cook RF, Duncombe PR, Kroll C (1989) J Mater Res 4:248CrossRefGoogle Scholar
  27. 27.
    Gallagher PK, O’Bryan HM, Sunshine SA, Murphey DW (1987) Mat Res Bull 22:995CrossRefGoogle Scholar
  28. 28.
    McNalford NM, Birchall JD, Clegg WJ, Harmer MA, Kendall K, Jones DH (1988) J Mater Sci 23:761CrossRefGoogle Scholar
  29. 29.
    Clarke DR, Shaw TM, Dimos D (1989) J Am Ceram 72:1103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Evelyne Cazy
    • 1
  • Ali Khalfi
    • 2
  • David S. Smith
    • 1
  • Marc Huger
    • 1
  • Jean Pierre Bonnet
    • 1
  1. 1.Groupe d’Etude des Matériaux HéterogènesEcole Nationale Supérieure de Céramique IndustrielleLimoges-cedexFrance
  2. 2.Laboratoire des Matériaux et Systèmes Réactifs, Faculté des Sciences de l’IngérieurUniversity of Djillali LLABESSidi Bel AbbesAlgeria

Personalised recommendations