Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6177–6182 | Cite as

Mixed pronton–electron conducting properties of Yb doped strontium cerate

  • Sun-Ju SongEmail author
  • Hyun-Soo Park
Article

Abstract

The electrical conductivity and hydrogen permeation properties of \({\hbox{Sr}\hbox{Ce}_{0.8}\hbox{Yb}_{0.2}\hbox{O}_{3-d}}\) membranes were studied as a function of temperature and \({P_{{\rm H}_{2}}}\) gradient. The bulk conductivity of \({\hbox{Sr}\hbox{Ce}_{0.8}\hbox{Yb}_{0.2}\hbox{O}_{3-d}}\) was an order of magnitude higher than the grain boundary conductivity over the temperature range 100–250 °C in feed gas of 4% H2/balance He (pH2O = 0.03 atm). The significantly lower grain boundary conductivity indicates that larger-grained materials might be more suitable for proton transport. The hydrogen flux through the membranes is proportional to thickness down to 0.7 mm. The hydrogen permeation flux increases with an increase in \({{P_{{\rm H}_{2}}}}\) gradient where the increase in hydrogen flux was explained by an increase in electron conduction as a function of temperature. The ambipolar conductivity calculated from hydrogen permeation fluxes shows the same \({{P_{{\rm H}_{2}}}}\) and \({{P_{{\rm O}_{2}}}}\) dependence as electron concentrations. The hydrogen and oxygen potential dependence of the ambipolar conductivity (\({\log \sigma_{\rm amb} =\log P_{\rm H_2}^{1/2} }\), \({\log \sigma_{\rm amb} =\log P_{{\rm O}_{2}}^{1/4} }\)) was understood from the defect structure. From this, it was confirmed that hydrogen permeation might be limited by electron transport at wet reducing atmosphere. From the temperature dependence of the electronic conductivity, the activation energy calculated at wet reducing conditions is 0.63 eV.

Keywords

pH2O Permeation Flux Hydrogen Permeation Ambipolar Diffusion Boundary Conductivity 

References

  1. 1.
    Balachandran U, Lee TH, Wang S, Dorris SE (2004) Inter J Hydrogen Energy 29:291CrossRefGoogle Scholar
  2. 2.
    Song S-J, Wachsman ED (2006) Chem Lett 35:1068CrossRefGoogle Scholar
  3. 3.
    Siriwardane RV, Poster JA, Fisher EP, Lee TH, Dorris SE, Balachandran U (2000) App Surf Sci 167:34CrossRefGoogle Scholar
  4. 4.
    Balachandran U, Mar B, Maiya PS, Mieville RL, Dusek JT, Picciole J, Guan J, Dorris SE, Liu M (1998) Solid State Ionics 108:363CrossRefGoogle Scholar
  5. 5.
    Du Y, Nowick S (1995) J Amer Ceram Soc 78:3033CrossRefGoogle Scholar
  6. 6.
    Kreuer KD (1999) Solid State Ionics 125:285CrossRefGoogle Scholar
  7. 7.
    Song S-J, Wachsman ED, Dorris SE, Balachandran U (2002) Solid State Ionics 149:1CrossRefGoogle Scholar
  8. 8.
    Poulsen FW (1999) J Solid State Chem 143:115CrossRefGoogle Scholar
  9. 9.
    Balachandran U, Lee TH, Wang S, Picciolo J, Dusek JT, Dorris SE (2000) Amer Chem Soc, 224:169-fuel part 1, Aug. 18,Google Scholar
  10. 10.
    Iwahara H (1995) Solid State Ionics 77:289CrossRefGoogle Scholar
  11. 11.
    Iwahara H (271) Solid State Ionics 125:271CrossRefGoogle Scholar
  12. 12.
    Haile SM, Boysen DA, Chisholm CRL, Merle RB (2002) Nature 410:910CrossRefGoogle Scholar
  13. 13.
    Kroger FA, Vink VJ (1956) In: Seitz F, Turnbull D (eds) Relations between the concentrations of imperfections in crystalline solids solid state physics, vol 3. Academic Press, New York, pp 307–405Google Scholar
  14. 14.
    Lewis GV, Catlow CRA (1983) Radiat Eff 73:307CrossRefGoogle Scholar
  15. 15.
    Hamakawa S, Anwa L, Iglesia E (2002) Solid State Ionics 148:71CrossRefGoogle Scholar
  16. 16.
    Song S-J, Wachsman ED, Rhodes J, Dorris SE, Balachandran U (2003) Solid State Ionics 164:107CrossRefGoogle Scholar
  17. 17.
    Haile SM, West DL, Campbell J (1998) J Mater Res 13:1576CrossRefGoogle Scholar
  18. 18.
    Macdonald JR (1987) Impedance spectroscopy. J. Wiley & Sons, New YorkGoogle Scholar
  19. 19.
    Song S-J, Wachsman ED, Rhodes J, Dorris SE, Balachandran U (2004) Solid State Ionics 167:99CrossRefGoogle Scholar
  20. 20.
    Song S-J, Wachsman ED, Rhodes J, Yoon H-S, Zhang G, Lee K-H, Dorris SE, Balachandran U (2005) J Mater Sci 40:4061CrossRefGoogle Scholar
  21. 21.
    Song S-J, Wachsman ED, Dorris SE, Balachandran U (2003) J Electrochem Soc 150:A790CrossRefGoogle Scholar
  22. 22.
    Song S-J, Wachsman ED, Dorris SE, Balachandran U (2003) J Electrochem Soc 150:A1484CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Division of Materials Science and EngineeringChonnam National UniversityGwangjuKorea

Personalised recommendations