Journal of Materials Science

, Volume 42, Issue 15, pp 6240–6245 | Cite as

Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, RE3+ phosphors

  • Xingdong LüEmail author
  • Wangen Shu
  • Qin Fang
  • Quanmao Yu
  • Xinqiang Xiong


The polycrystalline Eu2+ and RE3+ co-doped strontium aluminates SrAl2O4:Eu2+, RE3+ were prepared by solid state reactions. The UV-excited photoluminescence, persistent luminescence and thermo-luminescence of the SrAl2O4:Eu2+, RE3+ phosphors with different composition and doping ions were studied and compared. The results showed that the doped Eu2+ ion in SrAl2O4:Eu2+, Dy3+ phosphors works as not only the UV-excited luminescent center but also the persistent luminescent center. The doped Dy3+ ion can hardly yield any luminescence under UV-excitation, but can form a electron trap with appropriate depth and greatly enhance the persistent luminescence and thermo-luminescence of SrAl2O4:Eu2+. Different co-doping RE3+ ions showed different effects on persistent luminescence. Only the RE3+ ion (e.g. Dy3+, Nd3+), which has a suitable optical electro-negativity, can form the appropriate electron trap and greatly improve the persistent luminescence of SrAl2O4:Eu2+. Based on above observations, a persistent luminescence mechanism, electron transfer model, was proposed and illustrated.


Electron Trap Luminescent Center Hole Trap SrAl2O4 Crystal Matrix 



The financial support from the University of Jiangxi Finance and Economy as well as Jiangxi Provincial Department of Education (project [2007]260) is gratefully acknowledged.


  1. 1.
    Peng T, Liu H, Yang H, Yan C (2004) Mater Chem Phys 85:68CrossRefGoogle Scholar
  2. 2.
    Yuan Z-X, Chang C-K, Mao D-L, Ying WJ (2004) J Alloys Compd 377:268CrossRefGoogle Scholar
  3. 3.
    Yamatoto H, Matsuzawa T (1997) J Luminescence 72–74:287Google Scholar
  4. 4.
    Matusuazawa T, Aoki Y, Takeuchi N et al (1996) J Electrochem Soc 143:2670CrossRefGoogle Scholar
  5. 5.
    Jia W, Yuan H, Lu L, Liu H, Yen WM (1998) J Luminescence 76–77:424CrossRefGoogle Scholar
  6. 6.
    Jia W, Yuan H, Holmstrom S et al (1999) J Luminescence 83–84:469Google Scholar
  7. 7.
    Qiu J, Kawasaki M (1998) J Phys Chem Solids 59:1521CrossRefGoogle Scholar
  8. 8.
    Aitasaloa T, Deren P, Hölsä J, Jungner H., Krupa J-C et al (2003) J Solid State Chem 171:114CrossRefGoogle Scholar
  9. 9.
    Hölsä J, Jungner H, Lastusaari M et al (2001) J Alloys Compd 323–324:326CrossRefGoogle Scholar
  10. 10.
    Aitasaloa T, Hölsä J, Jungner H et al (2001) J Luminescence 94–95:59Google Scholar
  11. 11.
    Aitasalo T, Hölsä J, Jungner H et al (2006) J Phys Chem B 110:4589CrossRefGoogle Scholar
  12. 12.
    Lü X, Shu W, Huang K (2004) Chinese J Luminescence 25:673Google Scholar
  13. 13.
    Abbruscato V (1971) J Electrochem Soc: Solid State Sci 118:930CrossRefGoogle Scholar
  14. 14.
    Lin Y, Tang Z, Zhang Z (2003) J Eur Ceram Soc 23:175CrossRefGoogle Scholar
  15. 15.
    Sakai R, Katsumata T, Komuro S, Morikawa T (1999) J Luminescence 85:149CrossRefGoogle Scholar
  16. 16.
    McKeever SWS (1985) Thermoluminescence of Solid, 1st edn. London, Cambridge University Press, p. 85CrossRefGoogle Scholar
  17. 17.
    Kim TK, Woo JJ, Choe HS et al (1999) Radiat Prot Dosi 84(3):297CrossRefGoogle Scholar
  18. 18.
    Su Q (1993) Rare Earth Chemistry, 1st edn. Science and Technology Press, Zhenzhou, p. 13Google Scholar
  19. 19.
    Nag A, Kutty TRN (2003) J Alloys Compd 354:221CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Xingdong Lü
    • 1
    Email author
  • Wangen Shu
    • 2
  • Qin Fang
    • 1
  • Quanmao Yu
    • 1
  • Xinqiang Xiong
    • 1
  1. 1.Institute of Functional MaterialsJiangxi University of Finance and EconomyNanchangP.R. China
  2. 2.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaP.R. China

Personalised recommendations