Journal of Materials Science

, Volume 42, Issue 3, pp 1026–1030 | Cite as

High mobility organic transistor patterned by the shadow-mask with all structure on a plastic substrate

  • Joo-Won LeeEmail author
  • Byeong-Kwon Ju
  • Jin Jang
  • Young-Soo Yoon
  • Jai-Kyeong Kim


Pentacene thin film transistors fabricated without photolithographic patterning were fabricated on the plastic substrates. Both the organic/inorganic thin films and metallic electrode were patterned by shifting the position of the shadow-mask which accompanies the substrate throughout the deposition process. By using an optically transparent zirconium oxide (ZrO2) as a gate insulator and octadecyltrimethoxysilane (OTMS) as an organic molecule for self-assembled monolayer (SAM) to increase the adhesion between the plastic substrate and gate insulator and the mobility with surface treatment, high-performance transistor with field effect mobility 0.66 cm2/V s and Ion/Ioff > 105 was formed on the plastic substrate. This technique will be applicable to all structure deposited at low temperature and suitable for an easy process for flexible display.


Pentacene Plastic Substrate Gate Electrode Organic Thin Film Transistor Field Effect Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grant No. 2M18850 from the project of NANO TECHNOLOGY RESEARCH ASSOCIATION.


  1. 1.
    Nelson SF, Lin Y-Y, Gundlach DJ, Jackson TN (1998) Appl Phys Lett 72:1854CrossRefGoogle Scholar
  2. 2.
    Sheraw CD, Zhou L, Huang JR, Gundlach DJ, Jackson TN, Kane MG, Hill IG, Hammond MS, Campi J, Greening BK, Francl J, West J (2002) Appl Phys Lett 80:1088CrossRefGoogle Scholar
  3. 3.
    Dimitrakopoulos CD, Kymissis I, Purushothaman S, Neumayer DA, Duncombe PR, Laibowitz RB (1999) Adv Mater (Weinheim, Ger) 11:1372CrossRefGoogle Scholar
  4. 4.
    Dimitrakopoulos CD, Purushothaman S, Kymissis I, Callegair A, Shaw JM (1999) Science 283:822CrossRefGoogle Scholar
  5. 5.
    Dimitrakopouls CD, Brown AR, Pomp A (1996) J Appl Phys 80:2501CrossRefGoogle Scholar
  6. 6.
    Gundlacha DJ, Schlom DG, Nelson SF, Jackson TN (1999) Appl Phys Lett 74:3302CrossRefGoogle Scholar
  7. 7.
    Jackson TN, Lin YY, Gundlach DJ, Klauk H (1998) IEEE J Sel Top Quantum Electron 4:1CrossRefGoogle Scholar
  8. 8.
    Copel M, Gribelyuk M, Gusev EP (2000) Appl Phys Lett 76:436CrossRefGoogle Scholar
  9. 9.
    Jeon S, White JM, Kwong DL (2001) Appl Phys Lett 78:368CrossRefGoogle Scholar
  10. 10.
    Robertson J (2000) J Vac Sci Technol B 18:1785CrossRefGoogle Scholar
  11. 11.
    Urlacher C, Marco de Luca C, Bernstein E, Jacquier B, Mugnier J (1999) Opt Mater (Amsterdam, Neth) 12:19CrossRefGoogle Scholar
  12. 12.
    Mcleod HA (1986) Thin film optical filters, 2nd edn. Adam Hilger, Bristol, 519 ppGoogle Scholar
  13. 13.
    Mooney JF, Hunt AJ, Mcintosh JR, Liberko CA, Walba DM, Rogers CT (1996) Proc Natl Acad Sci USA 93:12287CrossRefGoogle Scholar
  14. 14.
    Parikh AN, Allara DL, Azouz IB, Rondelez F (1994) J Phys Chem 98:7577CrossRefGoogle Scholar
  15. 15.
    Brzoska JB, Azouz IB, Rondelezz F (1994) Langmuir 10:4367CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Joo-Won Lee
    • 1
    • 2
    Email author
  • Byeong-Kwon Ju
    • 3
  • Jin Jang
    • 2
  • Young-Soo Yoon
    • 4
  • Jai-Kyeong Kim
    • 1
  1. 1.Opto-Electric Materials Research CenterKorea Institute of Science and TechnologySeoulKorea
  2. 2.Department of PhysicsKyunghee UniversitySeoulKorea
  3. 3.Department of Electrical EngineeringKorea UniversitySeoulKorea
  4. 4.Department of Advanced Technology FusionKonkuk UniversitySeoulKorea

Personalised recommendations