Journal of Materials Science

, Volume 42, Issue 10, pp 3440–3453 | Cite as

A gas phase analysis technique applied to in-situ studies of gas–solid interactions

  • Clara AnghelEmail author
  • Qian Dong


An ultrahigh vacuum technique using mass spectrometry for in-situ investigations of gas–solid interactions is described in this paper. Examples of chemical reactions (oxidation, hydration) between solids and gas mixtures, dissociation of gases on solid surfaces, outgassing of solid materials and permeation of gases through membranes are discussed where the experimental arrangement is explained in detail. This Gas Phase Analysis (GPA) technique can be used at temperatures from room temperature to 1200 °C and at pressures up to 1 atm. Aspects related to sample preparation, isotopic gas mixture selection, data acquisition, calibration and interpretation of the experimental data are also addressed.


Oxide Scale Reaction Chamber Oxide Thickness Oxide Growth Oxygen Permeation 



We wish to thank Doc. G. Hultquist for fruitful discussions during this work. Financial support from Westinghouse Electric Sweden AB and Swedish Foundation for Strategic Research are gratefully acknowledged. Valuable suggestions from John Rundgren, Mike Graham and Peter Szakalos are also appreciated.


  1. 1.
    Macoll A (2000) In: Tranter GE, Holmes JL, Lindon JC (eds) Encyclopedia of spectroscopy and spectrometry. Academic Press, p 1241Google Scholar
  2. 2.
    Microsaic Systems,, as on 11 April 2006
  3. 3.
    Pavón JLP, Sánchez MN, Pinto CG, Laespada MEF, Cordero BM, Peña AG (2006) TrAC Trend Anal Chem 3:257CrossRefGoogle Scholar
  4. 4.
    Řepa P, Tesař J, Gronych T, Peksa L, Wild J (2002) J Mass Spectrom 37:1287CrossRefGoogle Scholar
  5. 5.
    Hultquist G, Gråsjö L, Lu Q (1993) Corros Sci 34:1035CrossRefGoogle Scholar
  6. 6.
    Levchuk D, Koch F, Maier H, Bolt H (2004) J Nucl Mat 328:103CrossRefGoogle Scholar
  7. 7.
    Haugsrud R (2003) In: Proceedings—Electrochemical Society, Vol. 16, High Temperature Corrosion and Materials Chemistry IV, 2003, p 200Google Scholar
  8. 8.
    Sasaki M Yoshida S (1994) J Appl Phys 75:4214CrossRefGoogle Scholar
  9. 9.
    Anghel C, Hultquist G, Limbäck M (2005) J Nucl Mat 340:271CrossRefGoogle Scholar
  10. 10.
    Hultquist G, Graham MJ, Wee ATS, Liu R, Sproule GI, Dong Q, Anghel C (2006) J Electrochem Soc 153:G182CrossRefGoogle Scholar
  11. 11.
    Hultquist G, Hörnlund E, Dong Q (2003) Corr Sci 45:2697CrossRefGoogle Scholar
  12. 12.
    Hultquist G, Tveten B, Hörnlund E, Limbäck M, Haugsrud R (2001) Oxid Met 56:313CrossRefGoogle Scholar
  13. 13.
    Tveten B, Hultquist G, Norby T (1999) Oxid Met 51:221CrossRefGoogle Scholar
  14. 14.
    Niessen WMA (1999) Liquid chromatography-mass spectrometry, Marcel Dekker Inc., New York p. 10Google Scholar
  15. 15.
    Basford JA et al. (1993) J Vac Sci Technol A 11:A22CrossRefGoogle Scholar
  16. 16.
    Anghel C, Hörnlund E, Hultquist G, Limbäck M (2004) Appl Surf Sci 233:392CrossRefGoogle Scholar
  17. 17.
    Hultquist G, Tveten B, Hörnlund E (2000) Oxid Met 54:1CrossRefGoogle Scholar
  18. 18.
    Hultquist G, Mathieu HJ, Gopalakrishnan R, Younes C, Lu Q (1994) Surf Interf Anal 21:800CrossRefGoogle Scholar
  19. 19.
    Hultquist G, Gråsjö L, Lu Q, Åkermark T (1994) Corros Sci 36:1459CrossRefGoogle Scholar
  20. 20.
    Åkermark T (1998) Oxid Met 50:167CrossRefGoogle Scholar
  21. 21.
    Wilhelmsen W, Grande AP (1990) Electroch Acta 35:1913CrossRefGoogle Scholar
  22. 22.
    Bassat JM, Petitjean M, Fouletier J, Lalanne C, Caboche G, Mauvy F, Grenier JC (2005) Appl Catal A: General 289:84CrossRefGoogle Scholar
  23. 23.
    van Craen MJ, Adams FC (1983) Surf Interf Anal 5:239CrossRefGoogle Scholar
  24. 24.
    Plog C, Wiedmann L, Benninghoven A (1977) Surf Sci 67:565CrossRefGoogle Scholar
  25. 25.
    Rahtu A, Alaranta T, Ritala M (2001) Langmuir 17:6506CrossRefGoogle Scholar
  26. 26.
    Chevalier S, Strehl G, Favergeon J, Desserrey F, Weber S, Heintz O, Borchardt G, Larpin JP (2003) Mat High Temp 20:253CrossRefGoogle Scholar
  27. 27.
    Hultquist G, Anghel C, Szakalos P (2006) In: Proceedings of the International Symposium on High-Temperature Oxidation and Corrosion 2005, Nara, Japan, 30th November—2nd December 2005, Mat Sci Forum, 522–523:139Google Scholar
  28. 28.
    Ziomek-Moroz M, Covino BS Jr, Cramer SD, Holcomb GR, Bullard SJ, Singh P Corrosion Nace, Paper No. 04534, 2004Google Scholar
  29. 29.
    Norby T, Widerøe M, Glöckner R, Larring Y (2004) Dalton Trans 19:3012CrossRefGoogle Scholar
  30. 30.
    Hörnlund E (2002) Appl Surf Sci 199:195CrossRefGoogle Scholar
  31. 31.
    Åkermark T, Hultquist G, Gråsjö L (1996) J Trace Microprobe Tech 14:377Google Scholar
  32. 32.
    Brossmann U, Würschum R, Södervall U, Schaefer H-E (1999) J Appl Phys 85:7646CrossRefGoogle Scholar
  33. 33.
    Anghel C, Hultquist G, Dong Q, Rundgren J, Saeki I, Limbäck M (2006) In: Proceedings of the International Symposium on High-Temperature Oxidation and Corrosion 2005, Nara, Japan, 30th November–2nd December 2005, Mat. Sci. Forum, 522–523:93Google Scholar
  34. 34.
    Anghel C (2004) In: Studies of Transport in Oxides on Zr-based Materials, Licentiate Thesis, Royal Institute of Technology, Stockholm, 2004Google Scholar
  35. 35.
    Åkermark T, Hultquist G, Lu Q (1996) J Mater Eng Perform 5:516CrossRefGoogle Scholar
  36. 36.
    Shelby JE (1996) Handbook of gas diffusion in solids and melts. ASM International, p.1Google Scholar
  37. 37.
    Barrer RM (1941) In: Rideal EK (ed) Diffusion in and through solids. Cambridge Univ. Press, p. 10Google Scholar
  38. 38.
    Hörnlund E, Hultquist G (2003) J Appl Phys 94:4819CrossRefGoogle Scholar
  39. 39.
    CRC Handbook of chemistry and Physics, 85th edn. David R Lide (ed) (2004–2005)Google Scholar
  40. 40.
    Encyclopedia of Spectroscopy and Spectrometry (2000) In: Tranter G, Holmes J, Lindon J (eds) Academic PressGoogle Scholar
  41. 41.
    MKS book- Operating Manual and Programming Reference, Stanford Research Systems,, as on 11 April 2006
  42. 42.
    Fehlner FP, Graham MJ (1995) In Marcus P, Oudar J (eds) Corrosion mechanisms in theory and practice, Marcel Dekker Inc., New YorkGoogle Scholar
  43. 43.
    Wallinder D, Hörnlund E, Hultquist G (2002) J Electr Soc 149:B393CrossRefGoogle Scholar
  44. 44.
    Grandjean A, Serruys Y (1999) J Nucl Mat 273:111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Division of Corrosion Science, Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden

Personalised recommendations