Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6287–6296 | Cite as

Preparation of lanthanum-doped TiO2 photocatalysts by coprecipitation

  • Xuejun QuanEmail author
  • Huaiqin Tan
  • Qinghua Zhao
  • Xuemei Sang
Article

Abstract

The lanthanum-doped TiO2 (La3+-TiO2) photocatalysts were prepared by coprecipitation and sol–gel methods. Rhodamine B was used as a model chemical in this work to evaluate the photocatalytic activity of the catalyst samples. The optimum catalyst samples were characterized by XRD, N2 adsorption–desorption measurement, SEM and electron probe microanalyses to find their differences in physical and chemical properties. The experimental results showed that the La3+-TiO2 catalysts prepared by coprecipitation exhibited obviously higher photocatalytic activities as compared with that prepared by the conventional sol–gel process. The optimum photocatalysts prepared by the coprecipitation and sol–gel process have similar adsorption equilibrium constants in Rhodamine B solution and particle size distribution in water medium although there are larger differences in their surface area, morphology and pore size distribution. The pores in the sol-gel prepared catalysts are in the range of mesopores (2–50 nm), whereas the pores in the coprecipitation prepared catalysts consist of bigger mesopores and macropores (>50 nm). The morphology of the primary particles and agglomerates of the La3+-TiO2 catalyst powders was affected by doping processes. The inhibition effect of lanthanum doping on the phase transformation is greater in the coprecipitation process than in the sol–gel process, which could be related with the different amount of Ti–O–La bonds in the precursors. This finding could be used for preparing the anatase La3+-TiO2 catalysts with more regular crystal structure through a higher heat treatment temperature. The optimum amount of lanthanum doping is ca. 1.0 wt.% and the surface atomic ratio of [O]/[Ti] is ca. 2.49 for 1.0 wt.% La3+-TiO2 catalysts prepared by the two processes. The obviously higher photocatalytic activity of the La3+-TiO2 samples prepared by the coprecipitation could be mainly attributed to their more regular anatase structure and more proper surface chemical state of Ti3+ species. The optimum preparation conditions are 1.0 wt.% doping amount of lanthanum ions, calcination temperature 800 °C and calcination time 2 h using the coprecipitation process. As compared with the sol-gel process, the coprecipitation process used relatively cheap inorganic raw materials and a simple process without organic solvents. Therefore, the coprecipitation method provides a potential alternative in realizing large scale production.

Keywords

TiO2 Photocatalytic Activity Calcination Temperature Heat Treatment Temperature High Photocatalytic Activity 

Notes

Acknowledgements

This research is supported by the fundamental research projects of Chongqing Institute of Technology and Chongqing Science and Technology Commission.

References

  1. 1.
    Noorjahan M, Durga KV, Subrahmanyam M, Boule P (2004) Appl Catal B: Environ 3:209CrossRefGoogle Scholar
  2. 2.
    Lee JH, Kang M, Choung SJ (2004) Water Res 3:713CrossRefGoogle Scholar
  3. 3.
    Ohno S, Sato D, Kon M (2003) Thin Solid Films 2:207CrossRefGoogle Scholar
  4. 4.
    Kawahara T, Ozawa T, Iwasaki M, Tada H (2003) J Colloid Interface Sci 2:377CrossRefGoogle Scholar
  5. 5.
    Kwon CH, Kim JH, Jung IS, Shin H (2003) Ceramics Int 8:851CrossRefGoogle Scholar
  6. 6.
    Kominami H, Kumamoto H, Kera Y (2003) J Photochem Photobiol A: Chem 1/2:99CrossRefGoogle Scholar
  7. 7.
    Nakashima T, Ohko Y, Kubota Y, Fujishima A (2003) J Photochem Photobiol A: Chem 1/2:115CrossRefGoogle Scholar
  8. 8.
    Villacres R, Ikeda S, Torimoto T, Ohtani B (2003) J Photochem Photobiol A: Chem 1/2:121CrossRefGoogle Scholar
  9. 9.
    Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Appl Catal A: Gen. 2:383CrossRefGoogle Scholar
  10. 10.
    Watson S, Beydoun D, Amal R (2002) J Photochem Photobiol A: Chem 1–3:303CrossRefGoogle Scholar
  11. 11.
    Yin S, Li RX, He QL, Sato T (2002) Mater Chem Phys 1–3:76CrossRefGoogle Scholar
  12. 12.
    Jung KY, Park SB, Ihm SK (2002) Appl Catal A: Gen 1/2:229CrossRefGoogle Scholar
  13. 13.
    Jin S, Shiraishi F (2004) Chem Eng J 2/3:203CrossRefGoogle Scholar
  14. 14.
    Di P, Agatino GL, Elisa MG (2004) Appl Catal B: Environ 3:223Google Scholar
  15. 15.
    Yamashita H, Harada M, Misaka J (2003) Catal Today 3/4:191CrossRefGoogle Scholar
  16. 16.
    Sugiyama K, Ogawa T, Saito N (2003) Surf Coat Technol 174–175:882CrossRefGoogle Scholar
  17. 17.
    Takeuchi M, Onozaki Y, Matsumura Y (2003) Nucl Instrum Methods Phys Res Section B. 206:259CrossRefGoogle Scholar
  18. 18.
    Rampaul A, Parkin IP, O’Neill SA, Souza JD, Mills A (2003) Polyhedron 1:35CrossRefGoogle Scholar
  19. 19.
    Yan PF, Zhou DR, Wang JQ (2002) Chem J Chinese U 12:2317 (in Chinese)Google Scholar
  20. 20.
    Liu HY, Gao L (2004) J Am Ceramic Soc 8:1582CrossRefGoogle Scholar
  21. 21.
    Wu SX, Ma Z, Qin YN (2004) Acta Phys Chim Sin 2:138Google Scholar
  22. 22.
    Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S (2003) Appl Catal B: Environ 4:403CrossRefGoogle Scholar
  23. 23.
    Dana D, Vlasta B, Milan M, Malati MA (2002) Appl Catal B: Environ 2:91Google Scholar
  24. 24.
    Di PA, Garcıa LE, Ikeda S (2002) Catal Today 1–4:87Google Scholar
  25. 25.
    Hu C, Tang YC, Tang HX (2004) Catal Today 3/4:325Google Scholar
  26. 26.
    Ranjit KT, Willner I, Bossmann SH, Braun AM (2001) Environ Sci Technol 7:1544CrossRefGoogle Scholar
  27. 27.
    Ranjit KT, Cohen H, Willner I, Bossmann S, Braun AM (1999) J Mater Sci 34:5273CrossRefGoogle Scholar
  28. 28.
    Ranjit KT, Willner I, Bossmann SH, Braun AM (2001) J Catal 204:305CrossRefGoogle Scholar
  29. 29.
    Xu AW, Gao Y, Liu HQ (2002) J Catal 2:151CrossRefGoogle Scholar
  30. 30.
    Matsuo S, Sakaguchi N, Yamada K, Matsuo T, Wakita H (2004) Appl Surf Sci 1–4:233CrossRefGoogle Scholar
  31. 31.
    Li FB, Li XZ, Hou MF (2004) Appl Catal B: Environ 48:185CrossRefGoogle Scholar
  32. 32.
    Xie YB, Yuan CW, Li XZ (2005) Mater Sci Eng B3:325CrossRefGoogle Scholar
  33. 33.
    Kimura T, Yoshikawa N, Matsumura N, Kawase Y (2004) J Environ Sci Health Part A 11–12:2867CrossRefGoogle Scholar
  34. 34.
    Qian SW, Wang ZY, Wang MQ (2003) J Mater Sci Eng 1:48 (in Chinese)Google Scholar
  35. 35.
    Overstone J, Yanagisawa K (1999) Chem Mater 11:2770CrossRefGoogle Scholar
  36. 36.
    Yu JG, Yu JC, Leung MKP, Ho WK, Cheng B, Zhao XJ, Zhao JC (2003) J Catal 217:69Google Scholar
  37. 37.
    Huang W, Tang X, Wang Y, Koltypin Y, Gendanken A (2000) Chem Commun 1415Google Scholar
  38. 38.
    Yu JG, Zhou MH, Cheng B, Yu HG, Zhao XJ (2005) J Mol Catal A: Chem 227:75CrossRefGoogle Scholar
  39. 39.
    Mills A, Morris S (1993) J Photochem Photobiol A: Chem 71:75CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Xuejun Quan
    • 1
    Email author
  • Huaiqin Tan
    • 1
  • Qinghua Zhao
    • 1
  • Xuemei Sang
    • 1
  1. 1.Department of Chemical and Biological engineeringChongqing Institute of TechnologyChongqingChina

Personalised recommendations