Journal of Materials Science

, Volume 42, Issue 3, pp 1054–1059 | Cite as

Low-temperature solid-state synthesis and phase-controlling studies of CdS nanoparticles

  • Jinsong Liu
  • Jieming CaoEmail author
  • Ziquan Li
  • Guangbin Ji
  • Shaogao Deng
  • Mingbo Zheng


In recent years, intensive development of nanocrystalline materials in nanotechnology has occurred worldwide. CdS has been an important semiconductor owing to its unique electronic and optical properties, and its potential applications in solar energy conversion, non-linear optical, photoelectrochemical cells and heterogeneous photocatalysis [1, 2]. To date, synthesis of nanosized CdS has been a subject matter of immense interest and its synthesis has been tried by various methods [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. However, either complex process control, reagents or long synthesis time would be required for these routes.

Recently, solid-state reaction has been developed in the synthesis of nanomaterials due to its many advantages: no need for solvent, no pollution, simple process and so on [15, 16, 17, 18, 19, 20, 21]. Though CdS nanoparticles have also been synthesized by room temperature solid-state reaction [22], further studies about the particles growth have...


Room Temperature Ionic Liquid Cadmium Acetate Hexagonal Crystal Structure Crystal Pattern Strong Blue Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the doctor Innovation Funds of Nanjing University of Aeronautics and Astronautics (BCXJ05-07).


  1. 1.
    Hu K, Brust M, Bard AJ (1998) Chem Mater 10:1160CrossRefGoogle Scholar
  2. 2.
    Weller H (1993) Angew Chem Int Ed 32:41CrossRefGoogle Scholar
  3. 3.
    Tamborra M, Striccoli M, Comparelli R, Curri ML, Petrella A, Agostiano A (2004) Nanotechnology 15:240CrossRefGoogle Scholar
  4. 4.
    Khiew PS, Huang NM, Radiman S, Ahmad MS (2004) Mater Lett 58:516CrossRefGoogle Scholar
  5. 5.
    Ludolph B, Malik MA, Obrien P, Revaprasadu N (1998) Chem Commun 17:1849CrossRefGoogle Scholar
  6. 6.
    Uosaki K, Okamura M, Ebina K (2004) Faraday Discuss 125:39CrossRefGoogle Scholar
  7. 7.
    Khanna PK, Lonkar SP, Subbarao VVVS, Jun KW (2004) Mater Chem Phys 87:49CrossRefGoogle Scholar
  8. 8.
    Ren T, Xu JZ, Tu YF, Xu S, Zhu JJ (2005) Electrochem Commun 7:5CrossRefGoogle Scholar
  9. 9.
    Li Y, Huang FZ, Zhang QM, Gu ZN (2000) J Mater Sci 35:5933CrossRefGoogle Scholar
  10. 10.
    Curri ML, Leo G, Alvisi M, Agostiano A, Della Monica M, Vasanelli L (2001) J Colloid Inter Sci 243:165CrossRefGoogle Scholar
  11. 11.
    Xu W, Akins DL (2004) Mater Lett 58:2623CrossRefGoogle Scholar
  12. 12.
    Wei QL, Kang SZ, Mu J (2004) Colloids Sur A: Physicochem Eng Aspects 247:125CrossRefGoogle Scholar
  13. 13.
    Torimoto T, Yamashita M, Kuwabata S, Sakata T, Mori H, Yoneyama H (1999) J Phys Chem B 103:8799CrossRefGoogle Scholar
  14. 14.
    Hirai T, Okubo H, Komasawa I (2000) J Mater Chem 10:2592CrossRefGoogle Scholar
  15. 15.
    Zhou YM, Xin XQ (1999) Chinese J Inorg Chem 15:273Google Scholar
  16. 16.
    Kanade KG, Hawaldar RR, Pasricha R, Radhakrishnan S, Seth T, Mulik UP, Kale BB, Amalnerkar DP (2005) Mater Lett 59:554CrossRefGoogle Scholar
  17. 17.
    Jin CF, Yuan X, Ge WW, Hong JM, Xin XQ (2003) Nanotechnology 14:667CrossRefGoogle Scholar
  18. 18.
    Liu Q, Ni YH, Yin G, Hong JM, Xu Z (2005) Mater Chem Phys 89:379CrossRefGoogle Scholar
  19. 19.
    Chen CN, Zhu CL, Hao LY, Hu Y, Chen ZY (2004) Chem Lett 33:898CrossRefGoogle Scholar
  20. 20.
    Zhou TY, Xin XQ (2004) Nanotechnology 15:534CrossRefGoogle Scholar
  21. 21.
    Wang ZJ, Zhang HM, Zhang LG, Yuan JS, Yan SG, Wang CY (2003) Nanotechnology 14:11CrossRefGoogle Scholar
  22. 22.
    Wang WZ, Liu ZH, Zheng CL, Xu CK, Liu YK, Wang GH (2003) Mater Lett 57:2755CrossRefGoogle Scholar
  23. 23.
    Cao JM, Fang BQ, Liu JS, Chang SQ, Zhang F (2005) Chinese J Inorg Chem 21:105Google Scholar
  24. 24.
    Zelaya-Angel O, Castillo-Alvarado F de L, Avendailo-Lopez J, Escamilla-Esquivel A, Contreras-Puente G, Lozada-Morales R, Torres-Delgadod G (1997) Solid State Commun 104:161Google Scholar
  25. 25.
    Branco LC, Rosa JN, Moura Ramos JJ, Afonso CAM (2002) Chem Eur J 8:3671CrossRefGoogle Scholar
  26. 26.
    Caponetti E, Pedone L, Chillura Martino D, Panto V, Liveri VT (2003) Mater Sci Engineer C 23:531CrossRefGoogle Scholar
  27. 27.
    Taghavinia N, Iraji-zad A, Mohammad Mahdavi S, Reza-esmaili M (2005) Phys E 30:114CrossRefGoogle Scholar
  28. 28.
    Calandra P, Longo A, Liveri VT (2003) J Phys Chem B 107:25CrossRefGoogle Scholar
  29. 29.
    Huaxue W, Chemistry Office of Dalian University of Technology, Higher Education Publishing Company, p 346Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jinsong Liu
    • 1
  • Jieming Cao
    • 1
    Email author
  • Ziquan Li
    • 1
  • Guangbin Ji
    • 1
  • Shaogao Deng
    • 1
  • Mingbo Zheng
    • 1
  1. 1.College of Material Science and Technology, Nanomaterials Research Institute Nanjing University of Aeronautics and AstronauticsNanjingP.R. China

Personalised recommendations