Journal of Materials Science

, Volume 42, Issue 10, pp 3326–3337 | Cite as

Surface modification of macroporous glycidyl methacrylate based copolymers for selective sorption of heavy metals

  • Ljiljana Malović
  • Aleksandra NastasovićEmail author
  • Zvjezdana Sandić
  • Jelena Marković
  • Dragana Đorđević
  • Zorica Vuković
Size-Dependent Effects


Two samples of macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate), poly(GMA-co-EGDMA), were synthesized by suspension copolymerization and modified with amines. Initial poly(GMA-co-EGDMA), and the samples modified with ethylene diamine [poly(GMA-co-EGDMA)-en], diethylene triamine [poly(GMA-co-EGDMA)-deta] and triethylene tetramine [poly(GMA-co-EGDMA)-teta], were characterized by mercury porosimetry, FTIR spectroscopy and elemental analysis. The most pronounced increase of specific surface area (75%) was observed for poly(GMA-co-EGDMA)-teta sample with smaller particles (D < 150 μm). The Cu(II) sorption was rapid, depending on porosity of amino-functionalized samples and ligand type. For poly(GMA-co-EGDMA)-deta and poly(GMA-co-EGDMA)-teta sorption half time required to reach 50% of total sorption capacity, t1/2, were around 3 min.

Sorption capacities for Cu(II), Co(II), Cd(II) and Ni(II) as well as for Cr(VI), Co(II), Cd(II) and Ni(II) ions were determined under competitive conditions as a function of pH, ligand type and porosity at room temperature. The results indicate selectivity of poly(GMA-co-EGDMA)-deta for Cu(II) over Cd(II) of 3:1 and for Cu(II) over Ni(II) and Co(II) of 6:1. The decrease in particle size of poly(GMA-co-EGDMA)-teta caused the increase of sorption capacities for all metal ions. At pH 1.8 the selectivity of poly(GMA-co-EGDMA)-teta with smaller particles for Cr(VI) over Ni(II), Co(II) and Cd(II) ions was 8.5:1.


Sorption Capacity Epoxy Group Teta Diethylene Triamine EGDMA 





Concentration of the metal ions in the initial solution (mmolml−1)


Concentration of the metal ions in the aqueous phase at time t (mmolml−1)


Particle diameter (μm)


Pore diameter (nm)


Mean pore diameter (nm)


Mean incremental pore diameter (nm)


Incremental pore diameter (nm)


Pore diameter that corresponds to half of the pore volume (nm)


Diethylene triamine


Ethylene glycol dimethacrylate


Ethylene diamine


Glycidyl methacrylate


Depth of the cylindrical pore (m)


Amount of copolymer used in metal sorption experiments (g)


Copolymer of glycidyl methacrylate and ethylene glycol dimethacrylate


Copolymer with attached ethylene diamine


Copolymer with attached diethylene triamine


Copolymer with attached triethylene tetramine


Total pore surface area (m2 g−1)


Specific surface area (m2 g−1)


Specific surface area (m2 g−1)


Incremental specific volume (m2 g−1)


Sorption half time (min)


Triethylene tetramine


Volume of the aqueous phase in metal sorption experiments (ml)


Specific pore volume (cm3 g−1)


Total pore volume (cm3 g−1)


Metal sorption capacity (mmolg−1)


Maximum metal sorption capacity (mmolg−1)



This work was supported by the Serbian Ministry of Science and Environmental Protection, Project ON 142039.


  1. 1.
    Smith SD, Alexandratos SD (2000) Solvent Extr Ion Exch 18:779CrossRefGoogle Scholar
  2. 2.
    Coutinho FMB, Rezende SM, Barbosa CCRC (2001) React Funct Polym 49:235CrossRefGoogle Scholar
  3. 3.
    Sherrington DC (1998) Chem. Commun. 2286Google Scholar
  4. 4.
    Van Berkel PM, Verweij PD, Driessen WL, Reedijk J, Sherrington DC (1992) Eur Polym J 28:747CrossRefGoogle Scholar
  5. 5.
    Bicak N, Sherrington DC, Sungur S, Tan N (2003) React Funct Polym 54:141CrossRefGoogle Scholar
  6. 6.
    Nastasović A, Jovanović S, Đorđević D, Onjia A, Jakovljević D, Novaković T (2004) React Funct Polym 58:139CrossRefGoogle Scholar
  7. 7.
    Nastasović A, Jovanović S, Jakovljević D, Stanković S, Onjia A (2004) J Serb Chem Soc 69:455CrossRefGoogle Scholar
  8. 8.
    Riqueza EC, de Santa Maria LC, Aguiar MRMP, Aguiar AP (2004) Mater Lett 58:502CrossRefGoogle Scholar
  9. 9.
    Kline GM (1959) In: Analytical chemistry of polymers. Interscience, New York, p 127Google Scholar
  10. 10.
    Jovanović S, Nastasović A, Jovanović N, Jeremić K, Savić Z (1994) Angew Makromol Chem 219:161CrossRefGoogle Scholar
  11. 11.
    Kun KA, Kunin R (1968) J Polym Sci A-1 6:2689Google Scholar
  12. 12.
    Švec F (1986) Angew Makromol Chem 144:39CrossRefGoogle Scholar
  13. 13.
    Jovanović S, Nastasović A, Jovanović N, Jeremić K (1996) Mater Sci Forum 214:155CrossRefGoogle Scholar
  14. 14.
    Švec F, Frechet JMJ (1995) Chem Mater 7:707CrossRefGoogle Scholar
  15. 15.
    Okay O (2000) Progr Polym Sci 25:711CrossRefGoogle Scholar
  16. 16.
    De Santa Maria LC, Aguiar MRMP, Guimaraes PIC, Amorim MCV, Costa MAS, Almeida RSM, Aguiar AP, Oliveira AJB (2003) Eur Polym J 39:291CrossRefGoogle Scholar
  17. 17.
    Horak D, Švec F, Bleha M, Kalal J (1981) Angew Makromol Chem 95:109CrossRefGoogle Scholar
  18. 18.
    Van Berkel PM, Driessen WL, Reedijk J, Sherrington DC, Zitsmanis A (1995) React Funct Polym 27:15CrossRefGoogle Scholar
  19. 19.
    Švec F, Hrudkova H, Horak D, Kalal J (1977) Angew Makromol Chem 63:23CrossRefGoogle Scholar
  20. 20.
    Kalal J, Švec F, Maroušek V (1974) J Polym Sci 47:155Google Scholar
  21. 21.
    Webb PA, Orr C (1997) In: Analytical methods in fine particle technology. Micromeritics Instrument Corporation, Norcross, p 185Google Scholar
  22. 22.
    Paredes B, Gonzales S, Rendueles M, Villa-Garcia MA (2003) Acta Mater 51:6189CrossRefGoogle Scholar
  23. 23.
    Navarro-Rodriguez D, Rodriguez-Gonzales EJ, Romero-Garcia J, Jimenez-Regalado EJ, Guillon D (1998) Eur Polym J 34:1039CrossRefGoogle Scholar
  24. 24.
    Van Berkel PM, Driessen WL, Parlevliet FJ, Reedijk J, Sherrington DC (1997) Eur Polym J 33:129CrossRefGoogle Scholar
  25. 25.
    Kalalova E, Beiglova V, Kalal J, Švec F (1978) Angew Makromol Chem 72:143CrossRefGoogle Scholar
  26. 26.
    Van Berkel PM, Van Der Slot SC, Driessen WL, Reedijk J, Sherrington DC (1997) Eur Polym J 33:303CrossRefGoogle Scholar
  27. 27.
    Verweij PD, Van Der Geest JSN, Driessen WL, Reedijk J, Sherrington DC (1992) React Polym 18:191CrossRefGoogle Scholar
  28. 28.
    Hruby M, Hradil J, Beneš MA (2004) React Funct Polym 59:105CrossRefGoogle Scholar
  29. 29.
    Lindsay D, Sherrington DC, Greig JA, Hancock RD (1990) React Polym 12:59CrossRefGoogle Scholar
  30. 30.
    Lindsay D, Sherrington DC, Greig JA, Hancock RD (1990) React Polym 12:75CrossRefGoogle Scholar
  31. 31.
    Senkal BF, Bicak N (2001) React Funct Polym 49:151CrossRefGoogle Scholar
  32. 32.
    Denizli A, Salih B, Piskin E (1996) React Funct Polym 29:11CrossRefGoogle Scholar
  33. 33.
    Sanchez JM, Hidalgo M, Salvado V (2001) React Funct Polym 49:215CrossRefGoogle Scholar
  34. 34.
    Kesenci K, Say R, Denizli A (2002) Eur Polym J 38:1443CrossRefGoogle Scholar
  35. 35.
    De Santa Maria LC, Amorim MCV, Aguiar MRMP, Guimaraes PIC, Costa MAS, De Aguiar AP, Rezende PR, De Carvalho MS, Barbosa FG, Andrade JM, Ribeiro RCC (2001) React Funct Polym 49:133CrossRefGoogle Scholar
  36. 36.
    Jehličkova A, Kalal J, Švec F (1979) Angew Makromol Chem 81:87CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ljiljana Malović
    • 1
  • Aleksandra Nastasović
    • 2
    Email author
  • Zvjezdana Sandić
    • 3
  • Jelena Marković
    • 4
  • Dragana Đorđević
    • 2
  • Zorica Vuković
    • 5
  1. 1.Faculty of ForestryBelgradeSerbia
  2. 2.Polymer DepartmentICTM, Center for ChemistryBelgradeSerbia
  3. 3.Chemistry DepartmentFaculty of ScienceBanja LukaBosnia and Herzegovina
  4. 4.Vinča Institute of Nuclear SciencesBelgradeSerbia
  5. 5.ICTM—Center for Catalysis and Chemical EngineringBelgradeSerbia

Personalised recommendations