Journal of Materials Science

, Volume 41, Issue 21, pp 7052–7058 | Cite as

The sliding wear behavior of TiCp/AZ91 magnesium matrix composites

  • K. Xiu
  • H. Y. Wang
  • H. L. Sui
  • Y. Wang
  • C. L. Xu
  • J. G. Wang
  • Q. C. JiangEmail author


The AZ91 metal matrix composites (MMCs) reinforced with 5, 10 and 15 wt.% TiC particulates are fabricated by TiCp–Al master alloy process combined with mechanical stirring. The effects of TiC particulate content, applied load and wearing time on the sliding wear behaviors of the composites were investigated using MM-200 wear testing apparatus. The results show that the wear resistance and friction coefficient of the composites increased and decreased with increase of the TiC particulate content, respectively. The wear volume loss and friction coefficient of the reinforced composites as well as the unreinforced AZ91 matrix alloy increased with increase of applied load or wearing time, but the increase rates of the reinforced composites in two performance is lower than those of the unreinforced AZ91 matrix alloy. Furthermore, the sliding wear behavior of the composites and the unreinforced AZ91 matrix alloy is characterized by ploughing, adhesion and oxidation abrasion.


Friction Coefficient Wear Surface Volume Loss Wear Debris AZ91 Alloy 



The research is supported by The National Natural Science Foundation of China (No. 50371030 and 50531030) and the Ministry of Science and Technology of the People Republic of China (No. 2005CCA00300) as well as the project 985-Automotive Engineering of Jilin University.


  1. 1.
    Luo A (1995) Metall Mater Trans A26A:2445CrossRefGoogle Scholar
  2. 2.
    Ferkel H, Mordike BL (2001) Mater Sci Eng A298:193CrossRefGoogle Scholar
  3. 3.
    Narayan M, Surappa MK, Pramila Bai BN (1995) Wear 181–183:563CrossRefGoogle Scholar
  4. 4.
    Rohatgi P (1991) JOM 43:10CrossRefGoogle Scholar
  5. 5.
    Hassan SF, Gupta M (2002) J Alloys Compd 335:L10CrossRefGoogle Scholar
  6. 6.
    Hassan SF, Gupta M (2002) Mater Res Bull 37:377CrossRefGoogle Scholar
  7. 7.
    Lim CYH, Lim SC, Gupta M (2003) Wear 255:629CrossRefGoogle Scholar
  8. 8.
    Jiang QC, Li XL, Wang HY (2003) Scripta Mater 48:713CrossRefGoogle Scholar
  9. 9.
    Wang HY, Jiang QC, Zhao YQ, Zhao F, Ma BX, Wang Y (2004) Mater Sci Eng A372:109CrossRefGoogle Scholar
  10. 10.
    Alahelisten A, Bergman F, Olsson M, Hogmark S (1993) Wear 165:221CrossRefGoogle Scholar
  11. 11.
    Saravanan RA, Surappa MK (2000) Mater Sci Eng A276:108CrossRefGoogle Scholar
  12. 12.
    Sharma SC, Anand B, Krishna M (2000) Wear 241:33CrossRefGoogle Scholar
  13. 13.
    Thakur SK, Dhindaw BK (2001) Wear 247:191CrossRefGoogle Scholar
  14. 14.
    Lim CYH, Leo DK, Ang JJS, Gupta M (2005) Wear 259:620CrossRefGoogle Scholar
  15. 15.
    Hassan SF, Gupta M (2005) Mater Sci Eng A392:163CrossRefGoogle Scholar
  16. 16.
    Gupta M, Ling S (1997) Mater Design 18(3):139CrossRefGoogle Scholar
  17. 17.
    Gupta M, Lai MO, Saravanaranganathan D (2000) J Mat Sci 35:2155CrossRefGoogle Scholar
  18. 18.
    Tjong SC, Lau KC (1999) Compos Sci Technol 59:2005CrossRefGoogle Scholar
  19. 19.
    Zhang ZF, Zhang LC, Mai YW (1994) Wear 176:231CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • K. Xiu
    • 1
  • H. Y. Wang
    • 1
  • H. L. Sui
    • 1
  • Y. Wang
    • 1
  • C. L. Xu
    • 1
  • J. G. Wang
    • 1
  • Q. C. Jiang
    • 1
    Email author
  1. 1.The Key Laboratory of Automobile Materials and Ministry of Education and Department of Materials Science and EngineeringJilin University at Nanling CampusChangchunP.R. China

Personalised recommendations