Journal of Materials Science

, Volume 41, Issue 21, pp 7064–7073 | Cite as

Influence of substitution of phenyl group by naphthyl in a diphenylthiourea molecule on corrosion inhibition of cold-rolled steel in 0.5 M H2SO4

  • O. Benali
  • L. LarabiEmail author
  • S. M. Mekelleche
  • Y. Harek


N,N′-Diphenylthiourea (DPTU) and N-naphthyl-N′-phenylthiourea (NPTU) synthesized in our laboratory, were tested as inhibitors for the corrosion of cold-rolled steel in 0.5 M H2SO4 by weight loss and electrochemical measurements. The studies clearly reveal that when we substitutes a phenyl group in N,N′-diphenylthiourea (DPTU) by naphthyl group to obtain N-naphthyl-N′-phenylthiourea (NPTU), the inhibition efficiency increases from 80 to 96% at 2 × 10−4 M. Polarization curves show that NPTU acts as mixed type inhibitor whereas DPTU predominates as cathodic inhibitor. Changes in impedance parameters (charge transfer resistance, Rt, and double layer capacitance, Cdl) were indicative of adsorption of DPTU and NPTU on the metal surface, leading to the formation of protective films. The degree of the surface coverage of the adsorbed inhibitors is determined by ac impedance technique, and it was found that the adsorption of these inhibitors on the cold-rolled steel surface obeys the Langmuir adsorption isotherm. The effect of the temperature on the corrosion behavior with addition of 10−4 M of DPTU and NPTU was studied in the temperature range 20–50 °C. Results show that the rate of corrosion of mild steel increased with increasing temperature both in the presence of inhibitors and in their absence. Activation energies in the presence and absence of DPTU and NPTU were obtained by measuring the temperature dependence of the corrosion current. The reactivity of these compounds was analyzed through theoretical calculations based on density functional theory to explain the different efficiency of these compounds as corrosion inhibitors.


Inhibition Efficiency Corrosion Inhibition Polarization Resistance Constant Phase Element Corrosion Current Density 


  1. 1.
    Bentiss F, Traisnel M, Gengembre L, Lagrenée M (1999) Appl Surf Sci 152:237CrossRefGoogle Scholar
  2. 2.
    Bentiss F, Lagrenée M, Traisnel M, Gornez JC (1999) Corros Sci 41:789CrossRefGoogle Scholar
  3. 3.
    El kanouni A, Kertit S, Srhiri A, Ben Bachir A (1996) Bull Electrochem 12:517Google Scholar
  4. 4.
    Mernari B, Elattari H, Traisnel M, Bentiss F, Lagrenée M (2002) Corros Sci 40:573Google Scholar
  5. 5.
    Ramesh S, Rajeswari S (2004) Electrochim Acta 49:811CrossRefGoogle Scholar
  6. 6.
    Touhami T, Aounti A, Abed Y, Hammouti B, Kertit S, Ramdani A, Elkacemi K (2000) Corros Sci 42:929CrossRefGoogle Scholar
  7. 7.
    Algaber AS, El-Nemna EM, Saleh MM (2004) Mater Chem Phys 86:26CrossRefGoogle Scholar
  8. 8.
    Branzoi V, Branzoi F, Baibarac M (2000) Mater Chem Phys 65:288CrossRefGoogle Scholar
  9. 9.
    Quraishi MA, Sardar R, Jamel D (2001) Mater Chem Phys 71:309CrossRefGoogle Scholar
  10. 10.
    Oguzie EE, Unaegbu C, Okolue CBN, Onuchukwu AI (2004) Mater Chem Phys 84:363CrossRefGoogle Scholar
  11. 11.
    Oguzie EE, Onuoha GN, Onuchukwu AI (2005) Mater Chem Phys 89:305CrossRefGoogle Scholar
  12. 12.
    Annand RR, Hurd RM, Hackerman N (1965) J Electrochem Soc 112:138CrossRefGoogle Scholar
  13. 13.
    Abo El Khair MB, Mostafa B, Khalifa OR, Abdel-hamid IA, Azzam AM (1987) Corros Prev Control 34:152Google Scholar
  14. 14.
    Abed Y, Hammouti B, Touhami F, Aouniti A, Kertit S, Mansri A (2001) Bull Electrochem 17:105Google Scholar
  15. 15.
    Larabi L, Harek Y, Traisnel M, Mansri A (2004) J Appl Electrochem 34:833CrossRefGoogle Scholar
  16. 16.
    Harek Y, Larabi L (2004) Kem Ind 53:55Google Scholar
  17. 17.
    Ameer MA, Khamis E, Al-Senani G (2002) J Appl Electrochem 32:149CrossRefGoogle Scholar
  18. 18.
    Quaraishi MA, Jamal D, Singh RN (2002) Corrosion 58:201CrossRefGoogle Scholar
  19. 19.
    Singh A, Chaudhary RS (1996) Br Corros J 31:300CrossRefGoogle Scholar
  20. 20.
    Ita BF, Offiong OE (1999) Mater Chem Phys 59:179CrossRefGoogle Scholar
  21. 21.
    Parr RG, Yang W (1989) In: Density-functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  22. 22.
    Dewar MJS, Zoebisch EG, Healy EF (1985) J Am Chem Soc 107:3902CrossRefGoogle Scholar
  23. 23.
    Stewart JJP (1990) J Comput Aided Mol Des 4:1CrossRefGoogle Scholar
  24. 24.
    Gaussian 94 (Revision D.1), Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith TA, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Peng CY, Ayala PY, Wong MW, Andres JL, Replogle ES, Gomperts Rn, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1995) Gaussian Inc., Pittsburgh, PAGoogle Scholar
  25. 25.
    Mulliken RS (1955) J Chem Phys 23:1833CrossRefGoogle Scholar
  26. 26.
    Cheng XL, Ma HY, Chen SH, Yu R, Chen X, Yao ZM (1999) Corros Sci 41:321CrossRefGoogle Scholar
  27. 27.
    Bockris JO’M, Yang B (1991) J Electrochem Soc 138:2237CrossRefGoogle Scholar
  28. 28.
    Hukovic-Metikos M, Babic R, Grutac Z (2002) J Appl Electrochem 32:35CrossRefGoogle Scholar
  29. 29.
    Mansfeld F (1981) Corrosion 37:301CrossRefGoogle Scholar
  30. 30.
    Mccafferty E (1997) Corros Sci 39:243CrossRefGoogle Scholar
  31. 31.
    Wu X, Ma H, Chen S, Xu Z, Sui A (1999) J Electrochem Soc 146:1847CrossRefGoogle Scholar
  32. 32.
    Ma H, Chen S, Yin B, Zhao S, Liu X (2003) Corros Sci 45:867CrossRefGoogle Scholar
  33. 33.
    Hackerman N, Mccafferty E (1974) In: Proceedings of the fifth international congress on metallic corrosion. Houston, TX, p 542Google Scholar
  34. 34.
    Zvauya R, Dawson JL (1994) J Appl Electrochem 24:943CrossRefGoogle Scholar
  35. 35.
    Villamil RFV, Corio P, Rubin JC, Agostinho SML (2002) J Electroanal Chem 535:75CrossRefGoogle Scholar
  36. 36.
    Pillai KC, Narayan R (1983) Corros Sci 23:151CrossRefGoogle Scholar
  37. 37.
    Awad MK (2004) J Electroanal Chem 567:219CrossRefGoogle Scholar
  38. 38.
    Putilova IN, Balezin SA, Barannik VP (1960) In: Metallic corrosion inhibitors. Pergamon Press, New YorkGoogle Scholar
  39. 39.
    Stoyanova AE, Sokolova EI, Raicheva SN (1997) Corros Sci 39:1595CrossRefGoogle Scholar
  40. 40.
    Lagrenée M, Mernari B, Bouanis M, Traisnel M, Bentiss F (2002) Corros Sci 44:573CrossRefGoogle Scholar
  41. 41.
    Sankarapapavinasam S, Pushpanaden F, Ahamed M (1991) Corros Sci 32:193CrossRefGoogle Scholar
  42. 42.
    Szauer T, Brandt A (1981) Electrochim Acta 26:1209CrossRefGoogle Scholar
  43. 43.
    Foroulis ZA (1990) in Proceedings of the 7th European corrosion inhibitors. Ferrara, pp 149Google Scholar
  44. 44.
    Mohamed AK, Raha TH, Moussa NNH (1990) Bull Soc Chim Fr 127:375Google Scholar
  45. 45.
    Ayers PW, Levy M (2000) Theor Chem Acc 103:353CrossRefGoogle Scholar
  46. 46.
    Geerlings P, De Proft F (2002) Int J Mol Sci 3:276CrossRefGoogle Scholar
  47. 47.
    Li Y, Evans JNS (1995) J Am Chem Soc 117:7756CrossRefGoogle Scholar
  48. 48.
    Cruz J, Martínez R, Genesca J, García-Ochoa E (2004) J Electroanal Chem 566:111CrossRefGoogle Scholar
  49. 49.
    Koopmans T (1933) Physica 1:104CrossRefGoogle Scholar
  50. 50.
    Stoyanova AE, Peyerimhoff SD (2002) Electrochim Acta 47:1365CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • O. Benali
    • 1
  • L. Larabi
    • 2
    Email author
  • S. M. Mekelleche
    • 2
  • Y. Harek
    • 2
  1. 1.Département de biologieCentre universitaire de SaïdaSaïdaAlgérie
  2. 2.Département de Chimie, Faculté des sciencesUniversité Abou Bakr BelkaïdTlemcenAlgérie

Personalised recommendations