Journal of Materials Science

, Volume 41, Issue 21, pp 7145–7149 | Cite as

UV Raman studies on carbon nitride structures

  • T. R. RavindranEmail author
  • J. V. Badding


Visible (514 nm) and deep UV (257 nm) Raman spectra of monoclinic tetracyanoethylene (tcne) are recorded at ambient conditions and also after laser heating at ambient pressure and at 40 GPa. Tetracyanoethylene (C2(CN)4) is a convenient precursor to synthesize hard C3N4 materials. At low incident laser powers the UV Raman spectra of virgin tcne resemble visible Raman spectra, and at higher powers there appear new, broad modes that increase in intensity as a function of laser power. When tcne is laser-heated at ambient pressure, there are two broad UV Raman peaks about 1,405 cm−1 and 1,604 cm−1 whereas visible laser Raman excitation results in too high a fluorescent background to show up any Raman modes. Raman spectrum of tcne laser heated at 40 GPa show broad peaks indicative of multiphase formation. The spectrum has additional modes at lower frequencies, and comparison with calculated Raman frequencies points to possible formation of α-C3N4.


Raman Spectrum Electron Energy Loss Spectroscopy Tcne Tetracyanoethylene Assisted Pulse Laser Deposition 


  1. 1.
    Liu AY, Cohen ML (1989) Science 245:841CrossRefGoogle Scholar
  2. 2.
    Teter DM, Hemley RJ (1996) Science 271:53CrossRefGoogle Scholar
  3. 3.
    Yu KM, Cohen ML, Haller EE, Hansen WL, Liu AY, Wu IC (1994) Phys Rev B 49:5034CrossRefGoogle Scholar
  4. 4.
    Wei J (2001) J Appl Phys 89:4099CrossRefGoogle Scholar
  5. 5.
    Morrison NA, Rodil SE, Robertson J, Milne WI (2001) J Appl Phys 89:5754CrossRefGoogle Scholar
  6. 6.
    Kroll P, Hoffman R (1999) J Am Chem Soc 121:4694CrossRefGoogle Scholar
  7. 7.
    Gil JM, Gil FJM, Sarikaya M, Qian M, Yacaman MJ, Rubio A (1997) J Appl Phys 81:2555CrossRefGoogle Scholar
  8. 8.
    Marton D, Boyd KJ, Al-Bayati AH, Todorov SS, Rabalais JW (1994) Phys Rev Lett 73:118CrossRefGoogle Scholar
  9. 9.
    Yang GW, Wang JB (2000) Appl Phys A 71:343CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Gao H, Gu Y (2001) J Phys D: Appl Phys 34:299CrossRefGoogle Scholar
  11. 11.
    Yen TY, Chou CP (1995) Solid State Commun 95:281CrossRefGoogle Scholar
  12. 12.
    Wixom MR (1990) J Am Ceram Soc 73:1973CrossRefGoogle Scholar
  13. 13.
    Zhao JP, Chen ZY, Yano T, Ooie T, Yoneda M (2001) J Appl Phys 89:1580 CrossRefGoogle Scholar
  14. 14.
    Zhao JP, Chen ZY, Yano T, Ooie T, Yoneda M, Sakakibara J (2001) J Appl Phys 89:1634CrossRefGoogle Scholar
  15. 15.
    Wang PN, Guo Z, Ying XT, Chen JH, Xu XM, Li FM (1999) Phys Rev B 59:13347CrossRefGoogle Scholar
  16. 16.
    Badding JV, Parker JV, Nesting DC (1995) J Solid State Chem 117:229CrossRefGoogle Scholar
  17. 17.
    Nesting DC, Badding JV (1996) Chem Mater 8:1535 CrossRefGoogle Scholar
  18. 18.
    Badding JV (1998) Ann Rev Mater Sci 28:631CrossRefGoogle Scholar
  19. 19.
    Badding JV, Meng JF, Polvani DA (1998) Chem Mater 10:2889 CrossRefGoogle Scholar
  20. 20.
    Kouvetakis J, Bandari A, Todd M, Wilkens B, Cave N (1994) Chem Mater 6:811CrossRefGoogle Scholar
  21. 21.
    Todd M, Kouvetakis J, Groy TL, Chandrasekhar D, Smith DJ, Deal PW (1995) Chem Mater 7:1422CrossRefGoogle Scholar
  22. 22.
    Liu AY, Wentzcovitch RM (1994) Phys Rev B50:10362CrossRefGoogle Scholar
  23. 23.
    Kroll P, Hoffmann R (1999) Am Chem Soc 121:4696CrossRefGoogle Scholar
  24. 24.
    Badding JV (1997) Adv Mater 9:877CrossRefGoogle Scholar
  25. 25.
    Badding JV, Nesting DC (1996) Chem Mater 8:535CrossRefGoogle Scholar
  26. 26.
    Hu J, Yang P, Lieber CM (1998) Phys Rev B 57:R3185CrossRefGoogle Scholar
  27. 27.
    Malkow T (2000) Mater Sci Eng A292:112CrossRefGoogle Scholar
  28. 28.
    Solozenko VL, Andrault D, Fiquet G, Mezouar M, Rubie DC (2001) Appl Phys Lett 78:1385CrossRefGoogle Scholar
  29. 29.
    Chen Y, Guo L, Wang EG (1997) Philos Mag Lett 75:155CrossRefGoogle Scholar
  30. 30.
    Werninghaus T, Zahn DRF, Wang EG, Chen Y (1998) Diamond Relat Mater 7:52CrossRefGoogle Scholar
  31. 31.
    Matsumoto S, Xie EQ, Izumi F (1999) Diamond Relat Mater 8:1175CrossRefGoogle Scholar
  32. 32.
    Zhang YP, Gu YS, Chang XR, Tian ZZ, Shi DX, Zhang XF, Yuan L (2000) Mater Sci Eng B78:11CrossRefGoogle Scholar
  33. 33.
    Zhang YP, Gu YS (2001) Phil Mag Lett 81:505CrossRefGoogle Scholar
  34. 34.
    He DW, Zhang FX, Zhang XY, Qin ZC, Zhang M, Liu RP, Xu YF, Wang K (1998) J Mater Res 13:345Google Scholar
  35. 35.
    Krenn CR, Morris Jr JW, Jhi SH, Ihm J (1998) In: Kumar A, Chung YW, Chia RWJ (eds) Hard coatings based on borides, carbides & nitrides. The Minerals, Metals & Materials Soc., Warrendale, PA, p 379Google Scholar
  36. 36.
    Brazhkin VV, Lyapin AG, Hemley R (2002) Phil Mag 82:231CrossRefGoogle Scholar
  37. 37.
    McMillan PF (2002) Nat Mater 1:19CrossRefGoogle Scholar
  38. 38.
    Regueiro MN, Monceau P, Hodeau JL (1992) Nature 355:237CrossRefGoogle Scholar
  39. 39.
    Regueiro MN, Abello L, Lucazeau G, Hodeau JL (1992) Phys Rev B46:9903CrossRefGoogle Scholar
  40. 40.
    Ravindran TR, Badding JV (2002) Solid State Commun 121:391CrossRefGoogle Scholar
  41. 41.
    Blank VD, Buga SG, Dubitsky GA, Serebryanaya NR, Popov MYu, Sundqvist B (1998) Carbon 36:319CrossRefGoogle Scholar
  42. 42.
    BlankV, Popov M, Pivovarov G, Lvova N, Gogolinsky K, Reshetov V (1998) Diamond Relat Mater 7:427CrossRefGoogle Scholar
  43. 43.
    Merkulov VI, Lannin JS, Munro CH, Asher SA, Veerasamy VS, Milne WI (1997) Phys Rev Lett 78:4869CrossRefGoogle Scholar
  44. 44.
    Bormett RW, Asher SA, Witowski RE, Partlow WD, Lizewski R, Pettit F (1995) J Appl Phys 77:5916CrossRefGoogle Scholar
  45. 45.
    Stair PC, Li C (1997) Sci Technol A15:1679Google Scholar
  46. 46.
    Ravindran TR, Jackson BR, Badding JV (2001) Chem Mater 13:4187CrossRefGoogle Scholar
  47. 47.
    van den Berg TM, van der Avoird A (1989) J Phys: Condens Matter 1:4047Google Scholar
  48. 48.
    Rao R, Sakuntala T, Deb SK, Mukhopadhyay R (2005) J Phys: Condens Matter 17:2633Google Scholar
  49. 49.
    Wada N, Solin SA, Wong J, Prochazka S (1981) J Non-Cryst Solids 43:7CrossRefGoogle Scholar
  50. 50.
    Ferrari AC, Rodil SE, Robertson J (2003) Phys Rev B67:155306CrossRefGoogle Scholar
  51. 51.
    Robertson J (2004) Diamond Relat Mater 13:1558CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Chemistry DepartmentPennsylvania State UniversityUniversity ParkUSA
  2. 2.Materials Science DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations