Advertisement

Journal of Materials Science

, Volume 41, Issue 21, pp 7150–7158 | Cite as

Microwave annealing for preparation of crystalline hydroxyapatite thin films

  • Daniel Adams
  • Gerald F. Malgas
  • R. D. Smith
  • S. P. Massia
  • T. L. Alford
  • J. W. Mayer
Article

Abstract

A sol was spun on single crystal silicon substrates at a spin-rate of 3000–5000 rpm followed by a low temperature cure to form a stable sol–gel/silicon structure. Good quality crystalline HA films of thickness ∼300–400 nm were obtained by annealing the sol–gel/Si structure in a conventional cavity applicator microwave system with a magnetron power of 1300 W, frequency of 2.45 GHz, and at a low processing temperature of 425 °C for annealing times ranging from 2–60 min. X-ray Diffraction and FTIR analysis confirmed that the crystalline quality of the thin films were comparable or better than those heat-treated under the same processing conditions (temperature and time) in a Rapid Thermal Annealing (RTA) system. The RBS data suggests a composition corresponding to stoichiometric hydroxyapatite Ca10(PO4)6(OH)2, the major inorganic component of bone. The results showed that the HA film thickness decreases with increasing sol spin-rate. The HA films showed good biocompatibility because little monocyte adhesion occurred and hence no inflammatory response was activated in vitro. The potential of microwave annealing for rapid and low temperature processing of good crystalline quality HA thin films derived from sol–gel is demonstrated.

Keywords

Rapid Thermal Annealing Rutherford Backscattering Spectrometry Monocyte Adhesion Splitting Factor Rutherford Backscattering Spectrometry Spectrum 

Notes

Acknowledgements

The authors would like to acknowledge the financial support of the National Research Foundation (South Africa)—Grant numbers: 2053829 (EGIC) and 2050587 (URDP), University of the Western Cape and Arizona State University (ASU). The work is partially supported by the NSF (USA), to whom the authors are greatly indebted. A word of thanks is also due to Shawn Whaley (Department of Chemistry, ASU) for the assistance with the FTIR analysis. We gratefully acknowledge the use of facilities within the Center for Solid State Science at ASU.

References

  1. 1.
    Corpe RS, Steflik DE, Whitehead RY (2000) Crit Rev Biomed Eng 28:395CrossRefGoogle Scholar
  2. 2.
    Haddow DB, James PF, Van Noort R (1998) J Sol-gel Sci Tech 13:261CrossRefGoogle Scholar
  3. 3.
    Liu D, Troczynski T, Tseng WJ (2001) Biomaterials 22:1721CrossRefGoogle Scholar
  4. 4.
    Chai CS, Ben-Nissan B, Pyke S, Evans L (1995) Mater Manuf Process 10:205CrossRefGoogle Scholar
  5. 5.
    Sutton WH (1989) Ceram Bull 68(2):76Google Scholar
  6. 6.
    Vijayan S, Varma H (2002) Mater Lett 56:827CrossRefGoogle Scholar
  7. 7.
    Fang Y, Agarwal DK, Roy DM, Roy R (1992) J Mater Res 7:490CrossRefGoogle Scholar
  8. 8.
    Varma HK, Sivakumar R (1996) Mater Lett 29:57CrossRefGoogle Scholar
  9. 9.
    Fang Y, Agrawal DK, Roy DM, Roy R (1995) Mater Lett 23:147CrossRefGoogle Scholar
  10. 10.
    Russell SW, Luptak KA, Suchicital CTA, Alford TL, Pizziconi VB (1996) J Am Ceram Soc 79(4):837CrossRefGoogle Scholar
  11. 11.
    Lopatin CM (1999) PhD Thesis, Arizona State UniversityGoogle Scholar
  12. 12.
    Powder diffraction File, Joint Committee on Powder Diffraction Standards (JCPDS), Card No. 9-432, 1994Google Scholar
  13. 13.
    Cullity BD (1967) Elements of X-ray diffraction. Addison Wesley, Read, MA, p 99Google Scholar
  14. 14.
    Doolittle LR (1985) Nucl Instrum Methods Phys Res B9:344CrossRefGoogle Scholar
  15. 15.
    Surovell TA, Stiner MC (2001) J Archaeol Sci 28:633CrossRefGoogle Scholar
  16. 16.
    Layrolle P, Ito A, Tateishi T (1998) J Am Ceram Soc 81:1421CrossRefGoogle Scholar
  17. 17.
    Manso M, Langlet M, Jimenez C, Martinez-Duart JM (2001) Int J Inorg Mater 3:1153–1155CrossRefGoogle Scholar
  18. 18.
    Hwang K, Song J, Kang B, Park Y (2000) Surf Coatings Technol 123:252–255CrossRefGoogle Scholar
  19. 19.
    Bornside DE, Macosko CW, Scriven LE (1987) J Imaging Tech 13:122–129Google Scholar
  20. 20.
    Brinker CJ, Scherer GW (1990) Sol–gel science Academic Press, Boston, MAGoogle Scholar
  21. 21.
    Meyerhofer D (1978) J Appl Phys 49:3993CrossRefGoogle Scholar
  22. 22.
    Spivak JM (1990) J Biomed Mater Res 24:1121CrossRefGoogle Scholar
  23. 23.
    Hwang K, Lim Y (1999) Surf Coatings Technol 115:172CrossRefGoogle Scholar
  24. 24.
    Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, Boskey AL (2001) Biochim Biophys Acta 1527:11CrossRefGoogle Scholar
  25. 25.
    Termine JD, Posner AS (1996) Nature 211:268CrossRefGoogle Scholar
  26. 26.
    Weiner S, Bar-Yosef O (1990) J Archaeol Sci 17:187CrossRefGoogle Scholar
  27. 27.
    Lopatin CM, Pizziconi VB, Alford TL (2001) J Mat Sci Mat Med 12:767CrossRefGoogle Scholar
  28. 28.
    Van Wazer R 1958 Phosphorous and its compounds. Interscience Publishers, Inc, NY, p 515Google Scholar
  29. 29.
    Lopatin CM, Pizziconi V, Alford TL, Laursen T (1998) Thin Solid Films 326:227CrossRefGoogle Scholar
  30. 30.
    Smith RD (2004) Masters Thesis. Arizona State UniversityGoogle Scholar
  31. 31.
    Meek TT (1987) J Mater Sci lett 6:638CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Daniel Adams
    • 1
  • Gerald F. Malgas
    • 2
  • R. D. Smith
    • 3
  • S. P. Massia
    • 3
  • T. L. Alford
    • 4
  • J. W. Mayer
    • 4
  1. 1.Department of PhysicsUniversity of the Western CapeBellvilleSouth Africa
  2. 2.CSIR Materials Science and ManufacturingPretoriaSouth Africa
  3. 3.Department of BioengineeringArizona State UniversityTempeUSA
  4. 4.Department of Chemical and Materials EngineeringArizona State UniversityTempeUSA

Personalised recommendations