Journal of Materials Science

, Volume 41, Issue 21, pp 7218–7224 | Cite as

A low temperature preparation and photocatalytical activities of PDVB@TiO2 hybrid microspheres

  • Zhang Liuxue
  • Liu Peng
  • Su ZhixingEmail author


The core/shell anatase TiO2 encapsulated poly(divinylbenzene) (PDVB@TiO2) hybrid microspheres were prepared by the two steps: (1) the copolymer particles (PDVB) were prepared by the radical precipitation copolymerization of divinylbenzene (DVB) and γ-[(methacryloxy)propyl]trimethoxysilane (KH-570); (2) tetrabutyl titanate (TBOT) was co-hydrolyzed with the trimethoxysilyl groups on the surfaces of the PDVB cores and then the amorphous TiO2 shell obtained was phase transformed to anatase TiO2 by acid peptization. The products were characterized by FT-IR, UV–vis, scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). Their photocatalytical activities were measured by the photo-degradation of methylene blue (MB). The polymer supported TiO2 photocatalysts prepared at low temperature, had better repetition because of the coupled action of KH-570 between the PDVB core and TiO2 shell. Furthermore, it could be easily separated from the solution by simple sedimentation.


TiO2 Methylene Blue Photocatalytic Activity Thermal Gravimetric Analysis Polymeric Support 


  1. 1.
    Hoffmann M, Martin S, Choi W, Bahnemann D (1995) Chem Rev 95:69CrossRefGoogle Scholar
  2. 2.
    Romeas V, Pichat P, Guillard C, Chopin T, Lehaut C (1999) Ind Eng Chem Res 38:3878CrossRefGoogle Scholar
  3. 3.
    Yin S, Inoue S, Uchida S, Fujishiro Y, Sato T (1998) J Mater Res 13:844CrossRefGoogle Scholar
  4. 4.
    Ovenstone J (2001) J Mater Sci 36:949CrossRefGoogle Scholar
  5. 5.
    Hu C, Wang YZ, Tang HX (2001) Appl Catal B Environ 30:277CrossRefGoogle Scholar
  6. 6.
    Langlet M, Kim A, Audier M, Herrmann JM (2002) J Sol-Gel Sci Technol 25:223CrossRefGoogle Scholar
  7. 7.
    Langlet M, Kim A, Audier M, Guillaid C, Herrmann JM (2003) J Mater Sci 38:3945CrossRefGoogle Scholar
  8. 8.
    Kotani Y, Matsuda A, Tatsumisago M, Minami T, Umezawa T, Kogure T (2000) J Sol-Gel Sci Technol 19:585CrossRefGoogle Scholar
  9. 9.
    Matsuda A, Kotani Y, Kogure T, Tatsumisago M, Minami T (2000) J Am Ceram Soc 83:229CrossRefGoogle Scholar
  10. 10.
    Matsuda A, Matoda T, Kotani Y, Kogure T, Tatsumisago M, Minami T (2003) J Sol-Gel Sci Technol 26:517CrossRefGoogle Scholar
  11. 11.
    Shimizu K, Imai H, Hirashima H, Tsukuma K (1999) Thin Solid Films 351:220CrossRefGoogle Scholar
  12. 12.
    Kumar KNP, Kumar J, Keizer K (1994) J Am Ceram Soc 77:1396CrossRefGoogle Scholar
  13. 13.
    Bacsa RR, Gratzel M (1996) J Am Ceram Soc 79:2185CrossRefGoogle Scholar
  14. 14.
    Chemseddine A, Moritz T (1999) Eur J Inorg Chem 1999:235CrossRefGoogle Scholar
  15. 15.
    Park OH, Kim CS (2004) J Appl Polym Sci 91:3174CrossRefGoogle Scholar
  16. 16.
    Zhang LX, Liu P, Su ZX (2006) Mater Chem Phys 98:115Google Scholar
  17. 17.
    Mills A, Wang J (1999) J Photochem Photobiol A 127:123CrossRefGoogle Scholar
  18. 18.
    Znaidi L, Seraphimova R, Bocquet JF, Colbeau-Justin C, Pommie C (2001) Mater Res Bull 36:811CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Xiong G, Yao N, Yang W, Fu X (2001) Catal Today 68:89CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouChina

Personalised recommendations