Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3353–3357 | Cite as

Iron-based composite oxides as alternative negative electrodes for lithium-ion batteries

  • I. UzunovEmail author
  • S. Uzunova
  • D. Kovacheva
  • S. Vasilev
  • B. Puresheva
Size-Dependent Effects

Abstract

Nanosized lithiated iron oxides with 10 and 50 wt.% SiO2 were prepared by a sol–gel method using 1 M Fe(NO3)3 · 9H2O and 1 M LiNO3 aqueous solutions in a stoichiometric ratio of 1:1 and colloidal silica. Dried xerogel was calcinated at 700 °C for 4 h in air. The X-ray data of samples synthesized using 10% and 50% SiO2 showed the presence of a mixture of two phases: α-LiFeO2 and Li1−xFe5O8 (0 < x ≤ 0.1) for a sample containing 10% SiO2 and LiFe(SiO3)2 and Fe2O3 (h) for a sample with 50% SiO2. The electrochemical behaviour of the compounds was investigated galvanostatically within the 0.01–3.0 V range at a current density of 0.80 mA cm−2. The Li/LixFeyOz (10%) · SiO2 cell showed a high initial reversible capacity of 1,080 mA h g−1 and a capacity of 600 mA h g−1 at the 30th cycle. Accounting these results is the presence of a SiO2 phase which stabilizes the structure of the active mass on cycling.

The mean charge voltage (1.8 V) and the discharge voltage of 1.0 V versus Li+ reference electrode as well as the high reversible capacity indicate that this material is suitable for use as anode in lithium-ion batteries.

Keywords

Active Material Electrochemical Behaviour Li2O Colloidal Silica LiNO3 

Notes

Acknowledgements

The authors gratefully acknowledge financial support by The Bulgarian Science foundation: Contract X-1412.

References

  1. 1.
    Winter M, Bezenhard JO, Spahr ME, Novak P (1998) Adv Mater 10:725CrossRefGoogle Scholar
  2. 2.
    Behm M, Irvine JTS (2002) Electrochem Acta 47:1727CrossRefGoogle Scholar
  3. 3.
    Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Science 276:1395CrossRefGoogle Scholar
  4. 4.
    Badway F, Plitz I, Grugeon S, Laruelle S, Dolle M, Gozdz AS, Tarascon J-M (2002) Electrochem Solid State Lett 5:A115CrossRefGoogle Scholar
  5. 5.
    Obrovac MN, Dunlap RA, Sanderson RJ, Dahn (2001) J Electrochem Soc 148(6):A576CrossRefGoogle Scholar
  6. 6.
    Lee YT, Yoon CS, Lee YS, Sun Y-K (2004) J Power Sources 134:88CrossRefGoogle Scholar
  7. 7.
    Xu JJ, Jain G (2003) Electrochem Solid State Lett 6(9):A190CrossRefGoogle Scholar
  8. 8.
    Tabuchi M, Ado K, Sakaevbe H, Masquelier C, Kageyama H, Naklamura O (1995) Solid State Ionics 79:220CrossRefGoogle Scholar
  9. 9.
    Shirane T, Kanno R, Kawamoto Y, Takeda Y, Kamiyama T, Izumi F (1995) Solid State Ionics 79:227CrossRefGoogle Scholar
  10. 10.
    Kanno K, Shirane T, Kawamoto Y, Takeda Y, Takano M, Ohashi M, Yamaguchi Y (1996) J Electrochem Soc 143:2435CrossRefGoogle Scholar
  11. 11.
    Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2004) J Solid State Electrochem 8:450CrossRefGoogle Scholar
  12. 12.
    Thackeray MM, David WIF, Goodenough JB (1982) Mat Res Bul 17:785CrossRefGoogle Scholar
  13. 13.
    Poizot P, Laruelle S, Gugeon S, Dupont L, Tarascon J-M (2000) Nature 407:496CrossRefGoogle Scholar
  14. 14.
    Lee YS, Sato S, Sun YK, Kobayakawa K, Sato Y (2003) Electrochem Commun 5:359CrossRefGoogle Scholar
  15. 15.
    Abraham KM, Pasquariello DM, Willstaedt EB (1990) J Electrochem Soc 137(3):743CrossRefGoogle Scholar
  16. 16.
    Kim J, Manthiram A (1999) J Electrochem Soc 146(12):4371CrossRefGoogle Scholar
  17. 17.
    Choi S, Manthiram A (2002) J Electrochem Soc 149(5):A570CrossRefGoogle Scholar
  18. 18.
    Chen J, Xu L, Li W, Gou X (2005) Adv Mater 17:582CrossRefGoogle Scholar
  19. 19.
    Kraus W, Nozle G (2000) Power cell program for Windows Ver.2.4. BAM, BerlinGoogle Scholar
  20. 20.
    Manev V, Momchilov A, Tagawa K, Kozawa A (1993) Prog Batteries Battery Mater 12:157Google Scholar
  21. 21.
    Klein C, Hurlbut Jr CS (1999) In: Manual mineralogy (after JD Dana). Wiley, New York, p 682Google Scholar
  22. 22.
    Pommier C, Downs R, Stimpfl M, Redhammer G, Bonner Denton M (2005) J Raman Spectrosc 36:864CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • I. Uzunov
    • 1
    Email author
  • S. Uzunova
    • 2
  • D. Kovacheva
    • 1
  • S. Vasilev
    • 2
  • B. Puresheva
    • 2
  1. 1.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Electrochemistry and Energy Systems (Former CLEPS)Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations