Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7894–7901 | Cite as

Tensile properties of iron-based P/M steels with ferrite + martensite microstructure

  • A. Güral
  • S. Tekeli
  • T. Ando
Article

Abstract

The effect of intercritical heat treatments on the tensile properties of iron-based P/M steels was investigated. For this purpose, atomized iron powder (Ancorsteel 1000) was admixed with 0.3 wt.% graphite powder. Tensile test specimens were cold pressed at 700 MPa and sintered at 1120 °C for 30 min under pure argon gas atmosphere. After sintering, ∼20% pearlite volume fraction in a ferrite matrix was obtained. To produce coarse ferrite + martensite microstructures, the sintered specimens were intercritically annealed at 724 and 760 °C and quenched in water. To obtain fine ferrite + martensite microstructures, the sintered specimens were first austenitized at 890 °C and water-quenched to produce a fully martensitic structure. These specimens were then intercritically annealed at 724 and 760 °C and re-quenched. After the intercritical annealing at 724 and 760 °C and quenching, martensite volume fractions were ∼ 18% and 43%, respectively, in both the coarse- and fine-grained specimens. Although the intercritically annealed specimens exhibited higher yield and tensile strength than the as-sintered specimens, their elongation values were lower. Specimens with a fine ferrite + martensite microstructure showed high yield and tensile strength and ductility in comparison to specimens with a coarse ferrite + martensite microstructure. The strength values of specimens increased with increasing martensite volume fraction.

Keywords

Ferrite Martensite Dual Phase Steel Intercritical Annealing Martensite Microstructure 

Notes

Acknowledgements

The authors are grateful to the DPT (the State Planning Organization of Turkey) for the financial support given under project number 2002K120250 and to Northeastern University, USA, for the use of laboratory facilities.

References

  1. 1.
    German RM (1998) Powder metallurgy of iron and steel. Willey, USA, pp 34Google Scholar
  2. 2.
    Danninger H, Spoljaric D, Weiss B (1997) Int J Powder Metall 33:43Google Scholar
  3. 3.
    Straffelini G, Fontanari V, Molinari A (1999) Mater Sci Eng A 260:197CrossRefGoogle Scholar
  4. 4.
    Sun S, Pugh M (2000) Mater Sci Eng A 276:167CrossRefGoogle Scholar
  5. 5.
    Tavares SSM, Pedroza PD, Teodósio JR, Gurova T (1999) Scr Mater 40(8):887CrossRefGoogle Scholar
  6. 6.
    Lis J, Morgiel J, Lis A (2003) Mater Chem Phys 81:466CrossRefGoogle Scholar
  7. 7.
    Sarwar M, Priestner R (1996) J Mater Sci 31:2091CrossRefGoogle Scholar
  8. 8.
    Kim NJ, Nakagawa AH (1986) Mater Sci Eng 83:145CrossRefGoogle Scholar
  9. 9.
    Cai X-L, Garratt-Reed AJ, Owen WS (1985) Metall Trans A 16:543CrossRefGoogle Scholar
  10. 10.
    Aksoy M, Karamış MB, Evin E (1996) Wear 19(2):428Google Scholar
  11. 11.
    Ahn YS, Kim HD, Byun TS, Oh YJ, Kim GM, Hong JH (1999) Nucl Eng Des 194(2–3):161CrossRefGoogle Scholar
  12. 12.
    Bayram A, Uğuz A, Ula M (1999) Mater Characterization 43(4):259CrossRefGoogle Scholar
  13. 13.
    Kim KJ, Lee CG, Lee S (1997) Scr Mater 38(1):27–32CrossRefGoogle Scholar
  14. 14.
    Lis J, Lis AK, Kolan C (2005) J Mater Process Technol 162–163:350CrossRefGoogle Scholar
  15. 15.
    Speich GR, Demarest VA, Miller RL (1981) Metall Trans A 12:1419CrossRefGoogle Scholar
  16. 16.
    Garcia CI, Deardo AJ (1980) Metall Trans A 12A:521Google Scholar
  17. 17.
    Kim KJ, Lee CG, Lee S (1997) Scr Mater 38(1):27CrossRefGoogle Scholar
  18. 18.
    El-Sesy IA, El-Baradie ZM (2003) Mater Lett 25:580Google Scholar
  19. 19.
    Tekeli S, Güral A (2005) Mater Sci Eng A 406:172CrossRefGoogle Scholar
  20. 20.
    D’Armas H, Llanes L, Peñafiel J, Bas J, Anglada M (2000) Mater Sci Eng A 277:291CrossRefGoogle Scholar
  21. 21.
    Mondal DK, Dey RM (1992) Metall Trans A 149A:173Google Scholar
  22. 22.
    Speich GR (1981) Physical metallurgy of dual-phase steel. Metall Soc of AIME, pp 3–45Google Scholar
  23. 23.
    Chawla N, Murphy TF, Narasimhan KS, Koopman M, Chawla KK (2001) Mater Sci Eng A 308:180CrossRefGoogle Scholar
  24. 24.
    Jeong WC, Kim CH (1988) Metall Trans A 19(2):309CrossRefGoogle Scholar
  25. 25.
    Ahmad E, Manzoor T, Ali KL, Akhter JI (2000) J Mater Eng Perform 9(3):306CrossRefGoogle Scholar
  26. 26.
    Eldis GT (1979) In: Kot RA, Morris JW (eds) Structure and properties of dual phase steels. AIME, New York, pp 202–220Google Scholar
  27. 27.
    Speich RG, Miller RL (1979) In: Kot RA, Morris JW (eds) Structure and properties of dual-phase steels. AIME, New York, pp 145–182Google Scholar
  28. 28.
    Davies RG (1979) In: Davenport AT (ed) Formable HSLA and dual-phase steels. Warrendale PA, AIME, pp 25–40Google Scholar
  29. 29.
    Straffelini G, Molinari A (2002) Mater Sci Eng A 334:96CrossRefGoogle Scholar
  30. 30.
    Spitzig WA, Smelser RE, Richmond O (1988) Acta Metall 36(5):1201CrossRefGoogle Scholar
  31. 31.
    Exner HE, Pohl D (1978) Powder Metall Int 10(4):193Google Scholar
  32. 32.
    Dudrova E, Kabatova M (2004) Proc. Vienna PM Word Conf (EPMA) 3:193–198Google Scholar
  33. 33.
    Chawla N, Deng X (2005) Mater Sci Eng A 390:98CrossRefGoogle Scholar
  34. 34.
    Chawla N, Polasik S, Narasimhan KS, Koopman M, Chawla KK (2001) Int J Powder Metall 37:49Google Scholar
  35. 35.
    Danninger H, Spoljaric D, Weiss B (1997) Int J Powder Metall 33:43Google Scholar
  36. 36.
    Chen HC, Cheng GH (1989) J Mater Sci 24:1991CrossRefGoogle Scholar
  37. 37.
    Sidjanin L, Miyasato S (1989) Mater Sci Technol 5(12):1200CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Materials Division, Technical Education FacultyGazi UniversityBesevler-AnkaraTurkey
  2. 2.Department of Mechanical, Industrial and Manufacturing EngineeringNortheastern UniversityBostonUSA

Personalised recommendations