Journal of Materials Science

, Volume 41, Issue 23, pp 7969–7977 | Cite as

Electrical and optical properties of InSbSe3 amorphous thin films

  • M. A. Afifi
  • E. Abd El-WahabbEmail author
  • A. E. Bekheet
  • H. E. Atyia


Electrical conductivity, IV characteristics and optical properties are investigated for InSbSe3 amorphous thin films of different thicknesses prepared by thermal evaporation at room temperature. The composition of both the synthesized material and thin films were checked by energy dispersive X-ray spectroscopy (EDX). X-ray analysis indicated that all samples under investigation have amorphous structure. The dc electrical conductivity was measured in the temperature range (303–393 K) and thickness range (149–691 nm). The activation energy ΔEσ was found to be independent of film thickness in the investigated range. The obtained IV characteristic curves for the investigated samples are typical for memory switches. The switching voltage increases linearly with film thickness in the range (113–750 nm), while it decreases exponentially with temperature in the range (303–393 K). The switching process can be explained according to an electrothermal process initiated by Joule-heating of the current channel. Measurements of transmittance and reflectance in the spectral range (400–2,500 nm) are used to calculate optical constants (refractive index n and absorption index k). Both n and k are practically independent of film thickness in the investigated range (149–691 nm). By analysis of the refractive index n the high frequency dielectric constant ε was determined via two procedures and was found to have the values of 9.3 and 9.15. Beyond the absorption edge, the absorption is due to allowed indirect transitions with energy gap of 1.46 eV independent on film thickness in the investigated range.


Absorption Index Switching Process In2Se3 Amorphous Semiconductor Switching Voltage 


  1. 1.
    Herrero J, Ortega J (1987) Solar Energy Mater 16:477CrossRefGoogle Scholar
  2. 2.
    Sahu SN (1995) Thin Sol Films 261:98CrossRefGoogle Scholar
  3. 3.
    Micocct G, Tepore A, Rella R, Siciliano P (1995) Phys Stat Sol (a) 148:431CrossRefGoogle Scholar
  4. 4.
    El-Shair HT, Bekheet AE (1992) J Phys D: Appl Phys 25:1122CrossRefGoogle Scholar
  5. 5.
    Abd El-wahabb E, Fouad SS, Fadel M (2003) J Mater Sci 38:527CrossRefGoogle Scholar
  6. 6.
    Gilbery LR, Vampelt B, Wood C (1974) J Phys Chem Sol 35:1629CrossRefGoogle Scholar
  7. 7.
    Belotskii DP, Babyuk PF, Demyanchuk NV, NovalKovskii NP, Bolchuk RF (1970) In: Low temperature thermoelectric materials (in Russion), Kishinev, p 29Google Scholar
  8. 8.
    Wobst M (1967) Z Metallkunde 58:481Google Scholar
  9. 9.
    Gasanly NM, Natig BA, Bakhyshov AE, Shirinov KG (1989) Phys Stat Sol (b) 153:k89CrossRefGoogle Scholar
  10. 10.
    Kuliyeva I, Khasanova LKh, Salimova NM (1986) Izv Akad Nauk Azerh SSR Ser Fiz Tekh Mat Nauk (USSR) 5:87Google Scholar
  11. 11.
    Spiesser M, Gruska RP, Subbarao SN, Castro CA, Wold A (1978) J Soli Sta Chem 26:111CrossRefGoogle Scholar
  12. 12.
    Soliman HS, Khalifa BA, El-Nahass MM, Ibrahim EM (2004) Physica b 351:11CrossRefGoogle Scholar
  13. 13.
    Eddika D, Ramadani A, Brbun G, Tedenac GC, Liautard B (1998) Mat Res Bull 33:519CrossRefGoogle Scholar
  14. 14.
    Tolansky S (1984) Multiple beam interferometry of surfaces and films. Oxford University, London and New York, p 147Google Scholar
  15. 15.
    Afifi MA, Hegab NA (1997) Vacuum 48:135CrossRefGoogle Scholar
  16. 16.
    Abd El-Salam F, Afifi MA, Abd El-Wahabb E (1993) Vacuum 44:1009CrossRefGoogle Scholar
  17. 17.
    Rajpure KY, Lokhande CD, Bhosale CH (1999) Mat Res Rull 34:1079CrossRefGoogle Scholar
  18. 18.
    Horak J, Lostak P, Benes LL (1984) Phill Mag B 50:665CrossRefGoogle Scholar
  19. 19.
    Lostak P, Navatny R, Kroutil J, Stary Z (1987) Phys Stat Sol (a) 104:841CrossRefGoogle Scholar
  20. 20.
    Abd El-Slam F, Afifi MA, Abd El-Wahabb E (1993) Vaccum 44:17CrossRefGoogle Scholar
  21. 21.
    Afifi MA, Labib HH, Hegab NA, Fadel M, Bekheet AE (1992) Indian J Pure Appl Phys 30:211Google Scholar
  22. 22.
    Kenawy MA, El-Shazly AE, Afifi MA, Zayed HA, El-Zahid HA (1991) Thin Sol Films, 200:203CrossRefGoogle Scholar
  23. 23.
    Mehra R, Shyam R, Mathur PC (1979) J Non-Crys Sol 31:435CrossRefGoogle Scholar
  24. 24.
    Bekheet AE (2001) Eur Phus J Appl Phys 16:187CrossRefGoogle Scholar
  25. 25.
    Shimakawa K, Inagaki Y, Arizumi T (1973) Jpn J Appl Phys 12:1043CrossRefGoogle Scholar
  26. 26.
    Afifi MA, Abdel-Aziz MM, Labib HH, Fadel M, El-Metwally EG (2001) Vacuum 61:45CrossRefGoogle Scholar
  27. 27.
    Afifi MA, Labib HH, Hegab NA, Fadel M, Bekheet AE (1995) Indian J Pure Appl Phys 33:129Google Scholar
  28. 28.
    Mehra R, Mathur PC (1979) J Non-Crys Sol 31:435CrossRefGoogle Scholar
  29. 29.
    De Wit HJ, Creveccoeur C (1972) Sol State Electron 15:729CrossRefGoogle Scholar
  30. 30.
    Murmann M (1933) Z Phys 80:161; (1936) Z Phys 101:643Google Scholar
  31. 31.
    Swanepoel R (1983) J Phys Sci Instrum 16:1214CrossRefGoogle Scholar
  32. 32.
    Zemel JN, Jensen JO, Schoolar RB (1965) Phys Rev A 140:330CrossRefGoogle Scholar
  33. 33.
    Lee PA, Said G, Davis R, Lim TH (1969) J Phys Chem Sol 30:2719CrossRefGoogle Scholar
  34. 34.
    Wemple SH, Didomenico M (1971) J Phys Rev B 3:1338CrossRefGoogle Scholar
  35. 35.
    Didomenico M, Wemple SH (1969) J Appl Phys 40:720CrossRefGoogle Scholar
  36. 36.
    Urbach F (1953) Phys Rev 92:1324CrossRefGoogle Scholar
  37. 37.
    Olley J (1973) Sol State Commun 13:1437CrossRefGoogle Scholar
  38. 38.
    Davis EA, Mott NF (1970) Phil Mag 22:903CrossRefGoogle Scholar
  39. 39.
    Tauc J, Grigorovic R, Vancu A (1966) Phys Stat Sol B 15:627CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • M. A. Afifi
    • 1
  • E. Abd El-Wahabb
    • 1
    Email author
  • A. E. Bekheet
    • 1
  • H. E. Atyia
    • 1
  1. 1.Physics Department, Faculty of EducationAin Shams UniversityRoxy, CairoEgypt

Personalised recommendations