Journal of Materials Science

, Volume 41, Issue 23, pp 7926–7933 | Cite as

Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash

  • Sathy ChandrasekharEmail author
  • P. N. Pramada
  • Jisha Majeed


Rice husk is an agricultural waste and its conversion to value added products makes it a secondary resource material. On heating, rice husk gives ash with >90% by weight of silica with some carbon and other nonmetallic and metallic impurities. Silica of high purity, chemical reactivity and white color can be produced from rice husk by controlling the heating conditions and this material finds wide industrial applications. Properties of the ash depend upon various pretreatments and calcination conditions. The present work deals with the investigation on a rice husk sample from the state of Andhra Pradesh in India. The raw husk and its acid treated form were calcined at different conditions such as temperatures, soaking periods and heating rates. Lime reactivity, surface area, brightness and color values of the ash samples were measured. The high potassium content in the husk has been found to inhibit the carbon removal during ashing which affected the color as well as reactivity of the ash. Properties of the ash samples from the untreated and acid treated husk have been compared and correlated with the formation conditions.


Rice Husk Amorphous Silica Cristobalite Surface Melting Black Particle 



The authors are grateful to the Director, Regional Research Laboratory, Thiruvananthapuram for giving permission to communicate this work. Thanks are also due to Mr. S. Ramaswamy, Mr. P. Guruswamy, Mr. K.M. Prakash and Mr. Veluswamy for AAS, XRD, surface area measurements and for carbon analysis. One of the authors (PNP) is indebted to CSIR (Govt. of. India) for financial assistance.


  1. 1.
    Jain AK, Sharma SK, Singh D (1997) J Agricult Eng 34:10Google Scholar
  2. 2.
    James J, Subba Rao M (1986) Am Ceram Soc Bull 65:1177Google Scholar
  3. 3.
    Della VP, Kuhn I, Hotza D (2002) Mater Lett 57:818CrossRefGoogle Scholar
  4. 4.
    Chandrasekhar S, Pramada PN, Raghavan P, Satyanarayana KG (2002) J Mater Sci Lett 21:1245CrossRefGoogle Scholar
  5. 5.
    Chandrasekhar S, Satyanarayana KG, Pramada PN, Raghavan P (2003) J Mater Sci 38:3159CrossRefGoogle Scholar
  6. 6.
    Nehdi M, Quette JD, Damatty AE (2003) Cement Concrete Res 33:1203CrossRefGoogle Scholar
  7. 7.
    Stroeven P, Bui DD, Sabuni E (1999) Fuel 78:153CrossRefGoogle Scholar
  8. 8.
    Zhang MH, Lastra R, Malhotra VM (1996) Cement Concrete Res 26:963CrossRefGoogle Scholar
  9. 9.
    Karera A, Nargis S, Patel S, Patel M (1986) J Sci Indust Res 45:441Google Scholar
  10. 10.
    Krishna Rao RV, Godkhindi MM (1992) Ceram Int 18:185CrossRefGoogle Scholar
  11. 11.
    Liou T-H (2004) Carbon 42:785CrossRefGoogle Scholar
  12. 12.
    Guo Y, Yu K, Wang Z, Xu H (2000) Carbon 41:1645CrossRefGoogle Scholar
  13. 13.
    Wu M, Zha Q, Qiu J, Guo Y, Shang H, Yuan A (2004) Carbon 42:205CrossRefGoogle Scholar
  14. 14.
    Naskar MK, Chatterjee M (2004) J Eur Ceramic Soc 24:3499CrossRefGoogle Scholar
  15. 15.
    Dalal AK, Rao MS, Gokhale KVGK (1985) Ind Eng Chem, Prod Res dev 24:465CrossRefGoogle Scholar
  16. 16.
    Wang HP, Lin KS, Huang YJ, Li MC, Tsaur LK (1998) J Hazardous Mater 58:147CrossRefGoogle Scholar
  17. 17.
    Krishna Rao RV, Godkhindi MM (1992) Ceram Int 18:185CrossRefGoogle Scholar
  18. 18.
    Suwanpratab J, Hatthapanit K (2002) J Appl Polym Sci 86:3013CrossRefGoogle Scholar
  19. 19.
    Ismail H, Nasaruddin MN, Ishiaku US (1999) Polymer Testing 18:287CrossRefGoogle Scholar
  20. 20.
    Ishak ZAM, Abubaker A, Ishiaku US, Hashim AS, Azahari B (1997) Eur Polym J 33:73CrossRefGoogle Scholar
  21. 21.
    Ishak ZAM, Abubaker A (1995) Eur Polym J 31:259CrossRefGoogle Scholar
  22. 22.
    Mbui DN, Shiundu PM, Ndonye RM, Kamau GN (2002) J Environ Monit 4:978CrossRefGoogle Scholar
  23. 23.
    Jauberthie R, Rendell F, Tamba S, Cisse I (2000) Construct Build Mater 14:423CrossRefGoogle Scholar
  24. 24.
    Biricik H, Akoz F, Berktay I, Tulgar AN (1999) Cement Concrete Res 29:637CrossRefGoogle Scholar
  25. 25.
    Yu Q, Sawayama K, Sugita S, Shoya M, Isojima Y (1999) Cement Concrete Res 29:37CrossRefGoogle Scholar
  26. 26.
    Feng Q Yamanichi H, Shoya M, Sugita S (2004) Cement Concrete Res 34:526Google Scholar
  27. 27.
    Paya J, Monzo J, Borrachero MV, Mellado A, Ordonez LM (2001) Cement Concrete Res 31:227CrossRefGoogle Scholar
  28. 28.
    Krishna Rao RV, Surahmanyam J, Jagadishkumar T (2001) J Eur Ceram Soc 21:104Google Scholar
  29. 29.
    Sidheswaran P, Bhat AN (1996) Trans Indian Ceram Soc 55:93CrossRefGoogle Scholar
  30. 30.
    Real C, Alcala MD, Criado JM (1996) J Am Ceram Soc 79(8):2012CrossRefGoogle Scholar
  31. 31.
    Chandrasekhar S, Pramada PN, Praveen L (2005) J Mater Sci 40:6535CrossRefGoogle Scholar
  32. 32.
    Ramarao G, Sastry ARK, Rohatgi PK (1989) Bull Mater Sci 12:76Google Scholar
  33. 33.
    Wu M, Zha Q, Qiu J, Guo Y, Shang H, Yuan A (2004) Carbon 42:205CrossRefGoogle Scholar
  34. 34.
    Liou T-H (2004) Carbon 42:785CrossRefGoogle Scholar
  35. 35.
    Guo Y, Yu K, Wang Z, Xu H (2000) Carbon 41:1645CrossRefGoogle Scholar
  36. 36.
    Krishna Rao RV, Subrahmanyam J, Jagadishkumar T (2001) Trans Indian Ceram Soc 60:97Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Sathy Chandrasekhar
    • 1
    Email author
  • P. N. Pramada
    • 1
  • Jisha Majeed
    • 1
  1. 1.Regional Research Laboratory (CSIR)ThiruvananthapuramIndia

Personalised recommendations