Journal of Materials Science

, Volume 41, Issue 21, pp 7019–7024 | Cite as

Preparation of smart paper part I—formation of nylon microcapsules on paper surface using interfacial polymerization

  • H. IchiuraEmail author
  • M. Morikawa
  • J. Ninomiya


In this study, nylon microcapsules were prepared on a paper surface using an interfacial polymerization technique for the preparation of smart paper. Filter paper impregnated with ethylenediamine solution and NaOH solution was left in a beaker containing cyclohexane or chloroform. Subsequently, the organic solvent terephthaloyl chloride was added to the beaker and interfacial polymerization occurred on the paper surface. When cyclohexane was used as the organic solvent, formation of nylon microcapsules on the paper surface was confirmed. Fixation of nylon microcapsules on the paper surface was successfully performed using interfacial polymerization. On the other hand, it was not possible to form nylon microcapsules on the paper surface when interfacial polymerization with chloroform was carried out. These results are due to differences in the spreading coefficient of the organic solvent on the ethylenediamine solution adsorbed on the paper surface.


Cyclohexane Water Interface Interfacial Polymerization Interfacial Force Paper Surface 



This work has been supported in part by a Grant-in-Aid for Cooperation of Innovative Technology and Advanced Research in Evolutional Areas (CITY AREA) from the Ministry of Education, Science and Culture, Japan. Dr. Biance Kuipers and Dr. Kerry Greer kindly made a linguistic revision of the manuscript.


  1. 1.
    Okahata Y, Lim H-J, Nakamura G, Hachiya S (1983) J Am Chem Soc 105(15):4855CrossRefGoogle Scholar
  2. 2.
    Chen C-W, Arai K, Yamamoto K, Serizawa T, Akashi M (2000) Macromol Chem Phys 201(18):2811CrossRefGoogle Scholar
  3. 3.
    Kim I-S, Jeong Y-I, Cho C-S, Kim S-H (2000) Int J Pharm 205:165CrossRefGoogle Scholar
  4. 4.
    Ramkissoon-Ganorkar C, Liu F, Baudyš M, Kim SW (1999) J Controll Rel 59:287CrossRefGoogle Scholar
  5. 5.
    Shino D, Murata Y, Kubo A, Kim YJ, Kataoka K, Koyama Y, Kikuchi A, Yokoyama M, Sakurai Y, Okano T (1995) J Controll Rel 37:269CrossRefGoogle Scholar
  6. 6.
    Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y (1998) J Am Chem Soc 120:12694CrossRefGoogle Scholar
  7. 7.
    Hisamitsu I, Kataoka K, Okano T, Sakurai Y (1997) Pharm Res 14(3):289CrossRefGoogle Scholar
  8. 8.
    Zrínyi M (2000) Colloid Polym Sci 278:98CrossRefGoogle Scholar
  9. 9.
    Watanabe H (1998) Sol Energy Mater Sol Cells 54:203CrossRefGoogle Scholar
  10. 10.
    White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Nature 409:794CrossRefGoogle Scholar
  11. 11.
    Ichiura H, Morikawa M, Fujiwara K (2005) J Mater Sci 40:1987CrossRefGoogle Scholar
  12. 12.
    Matsubara H, Takada M, Koyama S, Hashimoto K, Fujishima A (1995) Chem Lett 767Google Scholar
  13. 13.
    Iguchi Y, Ichiura H, Kitaoka T, Tanaka H (2003) Chemosphere 53:1193CrossRefGoogle Scholar
  14. 14.
    Ichiura H, Kitaoka T, Tanaka H (2002) J Mater Sci 37(14):2937CrossRefGoogle Scholar
  15. 15.
    Ichimura K (2000) In: Development of chromic materials. CMC Publishing Co., Ltd., Japan, pp 253–261 (in Japanese)Google Scholar
  16. 16.
    Park S-J, Shin Y-S, Lee J-R (2001) J Colloid Inter Sci 241:502CrossRefGoogle Scholar
  17. 17.
    Makino K, Arakawa M, Kondo T (1981) J Colloid Inter Sci 83(2):652CrossRefGoogle Scholar
  18. 18.
    Kawaguchi M (1999) In: Interface and colloid science of polymer. Corona Publishing Co., Ltd., Japan, pp 15–16Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Paper Ind. Res. Inst. Ehime Pref.EhimeJapan

Personalised recommendations