Journal of Materials Science

, Volume 42, Issue 10, pp 3358–3366 | Cite as

Tin-based amorphous and composite materials

  • Ekaterina PopovaEmail author
  • Yanko Dimitriev
Size-Dependent Effects


In recent years increasing attention has been devoted to tin composite oxide glasses (TCO glasses), which are most promising candidates as anode materials in lithium secondary batteries and they are also desirable from environmental viewpoint low melting glasses, sensing elements, non-linear optical materials and coatings. The aim of this paper is to review the studies of SnO-based oxide glasses and to present our experience in developing such amorphous materials. The obstacles in producing such materials are oxidation or disproportionation of SnO at high temperatures. Different techniques were applied to established reproducible methods for the synthesis of Sn-containing glasses. Tin oxide glasses were obtained in the binary systems with classical glass-former oxides: SnO–SiO2, SnO–GeO2, SnO–B2O3, SnO–P2O5, SnO–BPO4 and in oxyhalide systems SnX2–P2O5, (X = F, Cl). SnO essentially improves some technological characteristics of glasses, but many unsolved problems regarding the mechanism of its influence still remain. Depending on the composition, SnO tends to change its behavior from network-modifier to network-former. But the structural role and chemistry of tin in inorganic glasses is still not clearly understood. Our studies were focused on the systems of SnO–P2O5, SnO–P2O5–MO (M = Zn, Ba), SnCl2–P2O5, SnCl2–P2O5–MeCl2 (MenOm). The influence on the quality of glasses of different factors, such as nature of raw materials, the batch preparation and the melting conditions, has been studied. Low-melting stable glasses have been obtained at ambient atmosphere.


SnO2 B2O3 SnCl2 GeO2 SnF2 


  1. 1.
    Carbo Nover J, Williamson J (1967) Phys Chem Glasses 8:164Google Scholar
  2. 2.
    Ishikawa T, Akagi S (1978) Phys Chem Glasses 19:108Google Scholar
  3. 3.
    Paul A, Donaldson JD, Donoghue MT, Thomas MJK (1977) Phys Chem Glasses 18:125Google Scholar
  4. 4.
    Tick PA (1984) Phys Chem Glasses 25:149Google Scholar
  5. 5.
    Sanford LM, Tick PA (1982) U.S. Patent 4,314,031Google Scholar
  6. 6.
    Tick PA (1983) U.S. Patent 4,379,070Google Scholar
  7. 7.
    Karim M, Holland D (1995) Phys Chem Glasses 36:206Google Scholar
  8. 8.
    Vogel W (1994) In: Glass Chemistry. Springer-Verlag, Berlin, pp. 247, 274Google Scholar
  9. 9.
    Proshina OP, Nesterova IL, Fedorova TB, Komolova LF, Kovtunenko PV (1987) Steklo i Keramika 9:15Google Scholar
  10. 10.
    Pavlov RS, Carda Castello JB, Marza VB, Hohembergerger JM (2002) J Am Ceram Soc 85:1197Google Scholar
  11. 11.
    Rizzato AP, Santilli CV, Pulcinelli SH (2000) J Sol-Gel Sci Tech 19:811Google Scholar
  12. 12.
    Gonzalez-Oliver CJR, Kato I (1986) J Non-Cryst Sol 82:400Google Scholar
  13. 13.
    Kojima M, Kato H, Gatto M (1997) J Non-Cryst Sol 218:230Google Scholar
  14. 14.
    Toki M, Aizawa M (1997) J Sol-Gel Sci Tech 8:717Google Scholar
  15. 15.
    Stambolova I, Konstantinov K (1996) J Mater Sci 31:6207Google Scholar
  16. 16.
    Aegerter MA, Reich A, Ganz D, Gasparro G, Pütza J, Krajewski T (1997) J Non-Cryst Sol 218:123Google Scholar
  17. 17.
    Aegerter MA, Ganz D, Reich A (1997) J Non-Cryst Sol 218:242Google Scholar
  18. 18.
    Beaulieu LY, Hewitt KC, Turner RL, Bonakdarpour A, Abdo AA, Christensen L, Eberman KW, Krause LJ, Dahn JR (2003) J Electrochem Soc 150:A149Google Scholar
  19. 19.
    Von Rottkay K, Rubin M (1996) Mater Res Soc Symp Proc 426:449Google Scholar
  20. 20.
    Chiodini N, Paleari A, Spinolo G, Chiasera A, Ferrari M, Brambilla G, Taylor ER (2002) J Non-Cryst Sol 311:217Google Scholar
  21. 21.
    Fuji Photo Film Co. Ltd. (1995) European Patent, EP 0 704 921 A1Google Scholar
  22. 22.
    Radic S, Essiambre RJ, Boyd R, Tick PA, Borrelli N (1998) Optics Lett 23:1730Google Scholar
  23. 23.
    Aitken BG, Bookbinder DC, Greene ME, Morena RM (1993) US Patent 5,246,890Google Scholar
  24. 24.
    Morena R (2000) J Non-Cryst Solids 263&264:382Google Scholar
  25. 25.
    Kikuntani T, Yamamoto S, Shindo K (2004) In: Proceedings of the XX International Conference of Glass in Kyoto, 27 September to 1 October 2004. O-07-110Google Scholar
  26. 26.
    Masuda H, Suzuki S (2004) In: Proceedings of the XX International Conference of Glass in Kyoto, 27 September to 1 October 2004. O-07-053Google Scholar
  27. 27.
    Niida H, Takahashi M, Uchino T, Yoko T (2003) J Mater Res 18:1081Google Scholar
  28. 28.
    Niida H, Takahashi M, Uchino T, Yoko T (2002) Phys Chem Glasses 43C:416Google Scholar
  29. 29.
    Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Science 276:1395Google Scholar
  30. 30.
    Abrahams I, Hadzifejzovic E, Dygas JR (2004) Dalton Transations 19:3129Google Scholar
  31. 31.
    Kim T, Son D, Cho J, Park B, Yang H (2004) Electrochim Acta 49:4405Google Scholar
  32. 32.
    Hayashi A, Konishi T, Tadanaga K, Minami T, Tatsumisago M (2004) J Non-Cryst Sol 345–346:478Google Scholar
  33. 33.
    Chouvin J, Vicente CP, Olivier-Fourcade J, Jumas J-C, Simon B, Biensan P (2004) Solid State Sci 6:39Google Scholar
  34. 34.
    Hayashi A, Nakai M, Morimoto H, Minami T, Tatsumisago M (2004) J Mater Sci 39:5361Google Scholar
  35. 35.
    Tatsumisago M, Konishi T, Nakai M, Morimoto H, Tadanaga K, Minami T, Hayashi A (2004) In: Proceedings of the XX International Conference of Glass in Kyoto, 27 September to 1 October 2004. O-07-006Google Scholar
  36. 36.
    Robert F, Morato F, Chouvin J, Aldon L, Lippens PE, Fourcade JO, Jumas J-C, Simon B, Biensan P (2003) J Power Sources 119–121:581Google Scholar
  37. 37.
    Xiao YW, Lee JY, Yu AS, Liu ZL (1999) J Electrochem Soc 146:3623Google Scholar
  38. 38.
    Hayashi A, Nakai M, Tatsumisago M, Minami T, Katada M (2003) J Electrochem Soc 150:A582Google Scholar
  39. 39.
    Gejke C, Zanghellini E, Swenson J, Borjesson L (2003) J Power Sources 119–121:576Google Scholar
  40. 40.
    Gejke C, Swenson J, Delaplané RG, Börjesson L (2002) Phys Rev B 65:212201Google Scholar
  41. 41.
    Börjesson L, Gejke C, Swenson J Rutherford Appleton Laboratory ISIS Experimental Report RB No. 12546/2002-07-05Google Scholar
  42. 42.
    Gejke C, Zanghellini E, Fransson L, Edstrom K, Borjesson L (2001) J Power Sources 97–98:226Google Scholar
  43. 43.
    Branci C, Benjelloun N, Sarradin J, Ribes M (2000) Solid State Ionics 135:169Google Scholar
  44. 44.
    Lee JY, Xiao Y, Liu Z (2000) Solid State Ionics 133:25Google Scholar
  45. 45.
    Mansour N, Mukerjee S, Yang XQ, Mcbreen J (2000) J Electrochem Soc 147:869Google Scholar
  46. 46.
    Kim JY, King DE, Kumta PN, Blomgren GE (2000) J Electrochem Soc 147:4411Google Scholar
  47. 47.
    Goward GR, Nazar LF, Power WP (2000) J Mater Chem 10:1241Google Scholar
  48. 48.
    Machill S, Shodai T, Sakurai Y, Yamaki J (1999) J Sol State Electrochem 3:97Google Scholar
  49. 49.
    Chouvin J, Branci C, Sarradin J, Olivier-Fourcade J, Jumas JC, Simon B, Biensan P (1999) J Power Sources 81–82:277Google Scholar
  50. 50.
    Courtney A, Dunlap RA, Dahn JR (1999) Electrochim Acta 45:51Google Scholar
  51. 51.
    Courtney A, Mckinnon WR, Dahn JR (1999) J Electrochem Soc.146:59Google Scholar
  52. 52.
    Morimoto H, Nakai M, Tatsumisago M, Minami T (1999) J Electrochem Soc 146:3970Google Scholar
  53. 53.
    Yamanaka T (2003) US Patent 6,617,269Google Scholar
  54. 54.
    Williams KFE, Johnson CE, Johnson JA, Holland D, Karim M (1995) J Phys: Condens Matter 7:9485Google Scholar
  55. 55.
    Johnson JA, Johnson CE, Holland D, Sears A, Bent JF, Appleyard P, Thomas MF, Hannon A (2000) J Phys: Condens Matter 12:213Google Scholar
  56. 56.
    Bent JF, Hannon AC, Holland D, Karim MMA (1998) J Non-Cryst Solids 232–234:300Google Scholar
  57. 57.
    Sears A, Holland D, Dowsett MG (2000) Phys Chem Glasses 41:42Google Scholar
  58. 58.
    Morimoto H, Nakai M, Tatsumisago M, Minami T (2001) Electrochem Sol-State Lett 4:A16Google Scholar
  59. 59.
    Holland D, Smith ME, Poplett IJF, Johnson JA, Thomas MF, Bland J (2001) J Non-Cryst Sol 293–295:175Google Scholar
  60. 60.
    Holland D (2001) Rutherford Appleton Laboratory ISIS Experimental Report RB No. 12016/Jul 2001Google Scholar
  61. 61.
    Hayashi A, Nakai M, Tatsumisago M, Minami T (2002) Comptes Rendus Chimie 5:751Google Scholar
  62. 62.
    Braun M, Ehrt D, Daniel A, Jager C (1998) Glastech Ber Glass Sci Technol 71C:313Google Scholar
  63. 63.
    Hayashi A, Nakai M, Tatsumisago M, Minami T, Himei Y, Miura Y, Katada M (2002) J Non-Cryst Sol 306:227Google Scholar
  64. 64.
    Nakai M, Hayashi A, Morimoto H, Tatsumisago M, Minami T (2001) J Cer Soc Japan 109:1010Google Scholar
  65. 65.
    Bekaert E, Montagne L, Delevoye L, Palavit G, Revel B (2004) J Non-Cryst Sol 345–346:70Google Scholar
  66. 66.
    Holland D, Howes AP, Smith ME, Hannon AC (2002) J Phys: Condens Matter 14:13609Google Scholar
  67. 67.
    Martins O, Buzare JY, Emery J, Claudy P, Letoffe JM, Brandel V, Genet M (1997) J Sol-Gel Sci Tech 8:315Google Scholar
  68. 68.
    Chen G, Du Y, Wang S, Amrino AE, Gregg LL, Arrasmith SR, Jacobs SD (2002) In: Proceeding of XIX International Congress of Glass, Edinburgh 43C: 97Google Scholar
  69. 69.
    Harish Bhat M, Ganguli M, Rao KJ (2003) Bull Mater Sci 26:407Google Scholar
  70. 70.
    Harish Bhat M, Berry FJ, Jiang JZ, Rao KJ (2001) J Non-Cryst Sol 291:93Google Scholar
  71. 71.
    Shaw CM, Shelby JE (1988) Phys Chem Glasses 29:47Google Scholar
  72. 72.
    Shaw CM, Shelby JE (1988) Phys Chem Glasses 29:87Google Scholar
  73. 73.
    Shaw CM, Shelby JE (1988) J Amer Ceram Soc 71:C252Google Scholar
  74. 74.
    Xu XJ, Day DE (1990) Phys Chem Glasses 31:183Google Scholar
  75. 75.
    Anma M, Yano T, Yasumori A, Kawazoe H, Yamane M, Yamanaka H, Katada M (1991) J Non-Cryst Sol 135:79Google Scholar
  76. 76.
    Brow RK, Tallant DR, Osborne ZA, Yang Y, Day DE (1991) Phys Chem Glasses 32:188Google Scholar
  77. 77.
    Brow RK, Phifer CC, Xu XJ, Day DE (1992) Phys Chem Glasses 33:33Google Scholar
  78. 78.
    Xu XJ, Day DE, Brow RK, Callahan PM (1995) Phys Chem Glasses 36:264Google Scholar
  79. 79.
    Hu L, Jiang Z (1994) Phys Chem Glasses 35:38Google Scholar
  80. 80.
    Shih PY, Yung SW, Chen CY, Liu HS, Chin TS (1997) Mater Chem Phys 50:63Google Scholar
  81. 81.
    Sato Y, Tatsumisago M, Minami T (1997) Phys Chem Glasses 38:285Google Scholar
  82. 82.
    Yung SW, Shih PY, Chin TS (1998) Phys Chem Glasses 39:206Google Scholar
  83. 83.
    Morinaga K, Fujino S (2001) J Non-Cryst Sol 282:118Google Scholar
  84. 84.
    Shih PY (2002) J Mater Sci Lett 21:1153Google Scholar
  85. 85.
    Shih PY (2003) J Non-Cryst Sol 315:211Google Scholar
  86. 86.
    Choi WK, Sung H, Kim KH, Cho JS, Choi SC, Jung H-J, Koh SK, Lee CM, Jeong K (1997) J Mater Sci Lett 16:1551Google Scholar
  87. 87.
    Giefers H, Porsch F, Wortmann G (2005) Solid State Ionics 176:199Google Scholar
  88. 88.
    Moreno MS, Punte G, Rigotti G, Mercader RC, Weisz AD, Blesa MA (2001) Solid State Ionics 144:81Google Scholar
  89. 89.
    Matsui Y, Yamamoto Y, Takeda S (2000) Mat Res Soc Symp Proc 621:Q4.9.1Google Scholar
  90. 90.
    Shiomi H, Furukawa H (2000) J Mater Sci: Mat. in electronics 11:31Google Scholar
  91. 91.
    Shiomi H, Umehara K (2000) J Mater Sci: Mat. in electronics 11:445Google Scholar
  92. 92.
    Sycheva GA (1997) Russ J Inorg Chem 23Google Scholar
  93. 93.
    Mori H, Sakata H (1997) J Mater Sci 32:5243Google Scholar
  94. 94.
    Indrajit Sharma B, Pattanaik AK, Srinivasan A (2002) Phys Chem Glasses 43:12Google Scholar
  95. 95.
    Nikolskiy BP (1963) In: Spravochnik khimika. GHI, Moskow, 158Google Scholar
  96. 96.
    Kauzman AW (1948) Chem Rev 43:219Google Scholar
  97. 97.
    Gutzov I, Schmelzer J (1995) In: The Vitrious State. Springer, BerlinGoogle Scholar
  98. 98.
    Sakka S, Mackenzie JD (1971) J Non-Cryst Sol 6:145Google Scholar
  99. 99.
    Popova E, Dimitriev Y In: Samuneva B (ed) Proceeding of the 3rd Balkan Conference on Glass Science and Technology, Varna, September 2005 (in press)Google Scholar
  100. 100.
    Popova E, Dimitriev Y (2006) J UCTM (in press)Google Scholar
  101. 101.
    Popova E, Dimitriev Y (2004) In: Petrov L, Bonev Ch, Havezov I, Naydenov N (eds) Proceeding of the 5th National Conference on Chemistry, Sofia, 10P4 p 278Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Silicate TechnologyUniversity of Chemical Technology and MetallurgySofiaBulgaria

Personalised recommendations