Journal of Materials Science

, Volume 42, Issue 19, pp 8357–8362 | Cite as

Phase transformations of calcium phosphates formed in wet field environments

  • O. M. Clarkin
  • M. R. TowlerEmail author
  • G. M. Insley
  • M. E. Murphy


The crystal phase and morphology of calcium phosphate salts precipitated in a wet field environment at temperatures between 30 and 70 °C and pHs between 3 and 8 were examined. Dicalcium Phosphate Dihydrate (DCPD) was the most prevalent phase precipitated. Using accelerated ageing study techniques, precipitates studied were aged, under dry conditions at 50 °C for 8 and 16 days, before being re-examined using XRD, FTIR and SEM techniques. DCPD was found to be most stable when precipitated at 40 °C and 5 pH. Considerably more phase transformation to Octacalcium Phosphate (OCP), Amorphous Calcium Phosphate (ACP) and Hydroxyapatite (HA) was seen at high temperatures and high pHs, and a greater tendency to form anhydrous salts was seen at high temperatures and low pHs. Using techniques such as XRD, FTIR and SEM the transformation of the DCPD precipitate to OCP was analysed and appeared to occur without the presence of an intermediate amorphous phase. However, transformation from OCP to HA did result in the formation of an intermediate amorphous phase.


Calcium Phosphate Calcium Phosphate Cement DCPD Amorphous Calcium Phosphate DCPA 


  1. 1.
    Christoffersen MR, Dohrup J, Christoffersen J (1998) J Cryst Growth 186:283CrossRefGoogle Scholar
  2. 2.
    Raynaud S, Champion E, Bernache-Assollant D, Thomas P (2002) Biomaterials 23:1065CrossRefGoogle Scholar
  3. 3.
    Arifuzzaman SM, Rohani S (2004) J Cryst Growth 267:624CrossRefGoogle Scholar
  4. 4.
    Grossl PR, Inskeep WP (1992) Geochim Cosmochim Acta 56:1955CrossRefGoogle Scholar
  5. 5.
    Zhang H, Yan Y, Wang Y, Li S (2003) Mat Res 6(1):111Google Scholar
  6. 6.
    Graham S, Brown PW (1993) J Cryst Growth 132:215CrossRefGoogle Scholar
  7. 7.
    Ishikawa K, Takagi S, Chow LC, Yoshiko I (1995) J Mater Sci – Mater Med 6:528CrossRefGoogle Scholar
  8. 8.
    Landin M Rowe RC, York P (1994) Eur J Pharmacol Sci 2:245CrossRefGoogle Scholar
  9. 9.
    Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yoshida Y, Nagayama M, Kon M, Asaoka K (1997) J Biomed Mater Res 37(4):457CrossRefGoogle Scholar
  10. 10.
    Costantino PD, Friedman CD, Chow LC, Takagi S (1991) Mater Res Soc Symp Proc 179:3Google Scholar
  11. 11.
    Grover LM, Gbureck U, Wright AJ, Tremayne M, Barralet JE (2006) Biomaterials 27:2178CrossRefGoogle Scholar
  12. 12.
    Montastruc L, Azzaro-Pantel C, Biscans B, Cabassud M, Domenech S (2003) Chem Eng J 94:41CrossRefGoogle Scholar
  13. 13.
    Christoffersen J, Christoffersen MR, Kibalczyc W, Flemming W, Andersen A (1989) J Cryst Growth 94:767CrossRefGoogle Scholar
  14. 14.
    Freche M, Heughebaert JC (1989) J Cryst Growth 94:947CrossRefGoogle Scholar
  15. 15.
    Pang X, Bao X (2002) J Eur Ceramics Soc 23:1697CrossRefGoogle Scholar
  16. 16.
    Joshi VS, Joshi MJ (2003) Cryst Res Technol 38(9):817CrossRefGoogle Scholar
  17. 17.
    Ferreira A, Oliveira C, Rocha F (2003) J Cryst Growth 252:599CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • O. M. Clarkin
    • 1
  • M. R. Towler
    • 1
    Email author
  • G. M. Insley
    • 2
  • M. E. Murphy
    • 2
  1. 1.Materials & Surface Science InstituteUniversity of LimerickLimerickIreland
  2. 2.Biomaterials Research Group, StrykerLimerickIreland

Personalised recommendations