Journal of Materials Science

, Volume 42, Issue 10, pp 3299–3306 | Cite as

Oxidation of gold metal particles supported on TiO2: an FTIR study by means of low-temperature CO adsorption

  • Hr. Klimev
  • K. Fajerwerg
  • K. Chakarova
  • L. Delannoy
  • C. Louis
  • K. HadjiivanovEmail author
Size-Dependent Effects


Two Au/TiO2 samples with different gold loadings (0.7 and 4.0 wt.% Au) were prepared by deposition-precipitation with urea and calcined at 673 K. TEM revealed gold particles of 3.2 and 3.9 nm for the 0.7 and 4.0 wt.% samples, respectively. The samples were subjected to different red-ox treatments and then the state of gold was determined by the FTIR spectra of CO adsorbed at low temperature. Several kinds of gold carbonyl species were detected during the experiments: (i) Au0–CO at around 2107 cm−1; (ii) Au+–CO at ca. 2175 cm−1; (iii) Auδ+–CO in the region of 2140–2137 cm−1 and (iv) Auδ′+–CO (δ > δ) at around 2155 cm−1. The 4.0 wt.% sample contained mainly metallic gold after evacuation at 673 K. Subsequent interaction with oxygen at 373 K leads to oxidation of a fraction of the surface metallic gold sites to Auδ+ sites. These sites were considered as cations located on the surface of the metal particles with a partially positive charge δ+ (0 < δ < 1) because of electron transfer from the gold bulk. Evacuation at 673 K leads to back reduction of the Auδ+ sites to metallic gold. The oxidation of gold particles was more efficient when performed with a NO + O2 mixture. It resulted in creation of Auδ′+ sites with a higher positive charge than that of the Auδ+ sites. In this case the oxidation involved a higher number of Au0 sites. A similar treatment of the 0.7 wt.% Au sample, however, resulted in formation of “isolated” Au+ species. The results indicate that small metal particles are more easily oxidized by a NO + O2 mixture. A model of the formation of the different sites, explaining well the experimental results, is proposed.


Gold Particle Gold Atom Metallic Gold Carbonyl Band Gold Particle Size 



The authors are grateful to Egide, France (Project ECO-NET No 101186SH). We also thank S. Pronier for the TEM analyses and L.T.N. Nguyen for the preparation of the Au/TiO2 (0.7 Au wt %) sample.


  1. 1.
    Arii S, Mortin F, Renouprez AJ, Rousset JL (2004) J Am Chem Soc 126:1199CrossRefGoogle Scholar
  2. 2.
    Haruta M (2002) CATTECH 6:102CrossRefGoogle Scholar
  3. 3.
    Grunwaldt J-D, Maciejewski M, Becker O, Fabrizioli P, Baiker A (1999) J Catal 186:458CrossRefGoogle Scholar
  4. 4.
    Boyd D, Golunski S, Hearne G, Magadzu T, Mallick K, Raphulu M, Venugopal A, Scurrell M (2005) Appl Catal A292:76CrossRefGoogle Scholar
  5. 5.
    Fierro-Gonzalez JC, Gates BC (2004) J Phys Chem 108:16999CrossRefGoogle Scholar
  6. 6.
    Minico S, Scire S, Crisafalli C, Visco A, Galvagno S (1997) Catal Lett 47:273CrossRefGoogle Scholar
  7. 7.
    Hadjiivanov K, Vayssilov G (2002) Adv Catal 47:307Google Scholar
  8. 8.
    Davydov A (2003) Molecular Spectroscopy of Oxide Catalyst Surfaces. Wiley, ChichesterCrossRefGoogle Scholar
  9. 9.
    Knözinger H (1997) In: Ertl G, Knözinger H, Weitkamp J (eds), Handbook of Heterogeneous Catalysis, vol 2. Wiley–VCH, Weinheim, p 707Google Scholar
  10. 10.
    Boccuzzi F, Chiorino A, Tsubota S, Haruta M (1996) J Phys Chem 100:3625CrossRefGoogle Scholar
  11. 11.
    Boccuzzi F, Chiorino A, Manzoli M (2000) Surf Sci 454–456:942CrossRefGoogle Scholar
  12. 12.
    Boccuzzi F, Chiorino A, Manzoli M, Lu P, Akita T, Ichikawa S, Haruta M (2001) J Catal 202:256CrossRefGoogle Scholar
  13. 13.
    Boccuzzi F, Chiorino A, Manzoli M (2002) Surf Sci 513:502–503Google Scholar
  14. 14.
    Guillemot D, Borovkov V, Kazansky V, Polisset-Thfoin M, Fraissard J (1997) J Chem Soc Faraday Trans 93:3587CrossRefGoogle Scholar
  15. 15.
    Maciejewski M, Fabrizioli P, Grunwaldt J-D, Becker OS, Baiker A (2001) Phys Chem Chem Phys 3:3846CrossRefGoogle Scholar
  16. 16.
    Venkov Tz, Fajerwerg K, Delannoy L, Klimev Hr, Hadjiivanov K, Louis C (2006) Appl Catal A301:106CrossRefGoogle Scholar
  17. 17.
    Venkov Tz, Klimev Hr, Centeno MA, Odriozola JA, Hadjiivanov K (2006) Catal Commun 7:308CrossRefGoogle Scholar
  18. 18.
    Jia J, Kondo JN, Domen K, Tamaru K (2001) J Phys Chem B 105:3017CrossRefGoogle Scholar
  19. 19.
    Lemire C, Meyer R, Shaikhutdinov Sh, Freund H-J (2004) Surf Sci 552:27CrossRefGoogle Scholar
  20. 20.
    Fierro-Gonzalez JC, Anderson BG, Ramesh K, Vinod CP, Niemantsverdriet JWH, Gates BC (2005) Catal Lett 101:265CrossRefGoogle Scholar
  21. 21.
    Pestryakov A, Lunin V, Kharlanov A, Kochubey D, Bogdanchikova N, Stakheev A (2002) J Mol Struct 642:129CrossRefGoogle Scholar
  22. 22.
    Boccuzzi F, Chiorino A, Manzoli M (2001) Mater Sci Eng C15:215CrossRefGoogle Scholar
  23. 23.
    Carrettin S, Corma A, Iglesias M, Sanchez F (2005) Appl Catal A291:247CrossRefGoogle Scholar
  24. 24.
    Gao Z-X, Sun Q, Chen H-Y, Wang X, Sachtler WMH (2001) Catal Lett 72:1CrossRefGoogle Scholar
  25. 25.
    Yates DJC (1969) J Colloid Interface Sci 29:194CrossRefGoogle Scholar
  26. 26.
    Okumura K, Yoshino K, Kato K, Niwa M (2005) J Phys Chem B109:12380CrossRefGoogle Scholar
  27. 27.
    Grunwaldt JD, Baiker A (1999) J Phys Chem B103:1002CrossRefGoogle Scholar
  28. 28.
    Haruta M (1997) Catal Surv Jpn 1:61CrossRefGoogle Scholar
  29. 29.
    Boccuzzi F, Cerrato G, Pinna F, Strukul G (1998) J Phys Chem B 102:5733CrossRefGoogle Scholar
  30. 30.
    Mihaylov M, Fierro-Gonzalez JC, Knozinger H, Gates B, Hadjiivanov K (2006) J Phys Chem B 110:7695CrossRefGoogle Scholar
  31. 31.
    Concepción P, Carrettin S, Corma A (2006) Appl Catal A 307:42CrossRefGoogle Scholar
  32. 32.
    Dekkers M, Lippits M, Nieuwenhuys B (1998) Catal Lett 56:195CrossRefGoogle Scholar
  33. 33.
    Mohamed M, Salama T, Ichikawa M (2000) J Colloid Interface Sci 224:366CrossRefGoogle Scholar
  34. 34.
    Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA (2006) J Catal 240:222CrossRefGoogle Scholar
  35. 35.
    Zanella R, Giorgio S, Henry CR, Louis C (2002) J Phys Chem B 103:7634CrossRefGoogle Scholar
  36. 36.
    Busca G, Saussey H, Saur O, Lavalley J-C, Lorenzelli V (1985) Appl Catal 14:245CrossRefGoogle Scholar
  37. 37.
    Hadjiivanov K, Klissurski D (1996) Chem Soc Rev 25:61CrossRefGoogle Scholar
  38. 38.
    Hadjiivanov K, Lamotte J, Lavalley J-C (1997) Langmuir 13:3374CrossRefGoogle Scholar
  39. 39.
    Hadjiivanov K (2000) Catal Rev Sci Eng 42:71CrossRefGoogle Scholar
  40. 40.
    van Bokhoven JA, Louis C, Miller JT, Tromp M, Safonova OV, Glatzel P, Ang Chemie, 2006, DOI: 10.1002/anie.200123456Google Scholar
  41. 41.
    Meyer R, Lemire C, Shaikhutdinov SK, Freund HJ (2004) Gold Bull 37:72CrossRefGoogle Scholar
  42. 42.
    Richardson PC, Rossington DR (1971) J Catal 20:420CrossRefGoogle Scholar
  43. 43.
    Fu L, Wu NQ, Yang JH, Qu F, Johnson DL, Kung MC, Kung HH, David VP (2005) J Phys Chem B 109:3704CrossRefGoogle Scholar
  44. 44.
    Guzman J, Gates BC (2003) J Phys Chem B 107:2242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hr. Klimev
    • 1
  • K. Fajerwerg
    • 2
  • K. Chakarova
    • 1
  • L. Delannoy
    • 2
  • C. Louis
    • 2
  • K. Hadjiivanov
    • 1
    Email author
  1. 1.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Laboratoire de Réactivité de SurfaceUniversité P. et M. CurieParis Cedex 05France

Personalised recommendations