Journal of Materials Science

, Volume 41, Issue 23, pp 7747–7759 | Cite as

A new challenge: grain boundary engineering for advanced materials by magnetic field application

  • Tadao WatanabeEmail author
  • Sadahiro Tsurekawa
  • Xiang Zhao
  • Liang Zuo
  • Claude Esling


This paper gives an overview of “Grain boundary engineering (GBE) for advanced materials by magnetic field application” based on recent experimental work performed on different kinds of structural and functional materials. It is shown that magnetic field application has a great potential and unique advantage as “non-contact processing” for microstructure control, irreplaceable by any other existing processing methods. The control of grain growth and texture by magnetic fields has been found to be generally applicable to many metallic materials, irrespective of whether they are ferromagnetic or not. Grain growth which is controlled by grain boundary migration was found to be strongly affected by magnetic field application. Recent attempts at the grain boundary engineering by magnetic field application through phase transformation have revealed that magnetic phase transformation can provide us a new approach to grain boundary engineering for iron alloys and steels, as well as a new nanocrystalline material produced by magnetic crystallization from the amorphous state. The possibility of engineering applications of enhanced densification using magnetic sintering and magnetic rejuvenation has been discussed for iron powder compacts and deformation-damaged iron alloys, respectively.


Magnetic Field Application Magnetic Field Gradient Boundary Segregation Orientation Imaging Microscopy Magnetic Annealing 



The authors acknowledge their coworkers who were involved in the reported work on grain boundary engineering by magnetic field application. One (T.W.) of the authors would like to express his sincere gratitude to Prof. S.-J.L. Kang and Prof. D.Y. Yoon for the provision of a pleasant stay at KAIST, Korea which enabled him to write this paper. The authors’ acknowledgement also goes to Dr. Victoria A. Yardley who kindly read and corrected the manuscript.


  1. 1.
    Metal Interfaces, ASM (1951)Google Scholar
  2. 2.
    McLean D (1957) Grain boundaries in metals. Oxford University PressGoogle Scholar
  3. 3.
    Gleiter H, Chalmers B (1972) Progress in Materials Science, vol 16. Pergamon Press, pp 1–274Google Scholar
  4. 4.
    Chadwick AG, Smith DA (eds) (1976) Grain boundary structure and properties. Academic PressGoogle Scholar
  5. 5.
    Balluffi RW (ed) (1980) Grain boundary structure and kinetics, ASMGoogle Scholar
  6. 6.
    Wolf D, Yip S (eds) (1992) Materials interfaces, Chapman & Hall Google Scholar
  7. 7.
    Ranganathan S, Pande CS, Rath BB, Smith DA (eds) (1993) Interfaces: structure and properties. Trans. Tech. Pub Google Scholar
  8. 8.
    Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Oxford University PressGoogle Scholar
  9. 9.
    Watanabe T (1984) Res Mechanica 11:47Google Scholar
  10. 10.
    Aust KT, Palumbo G (1989) In: Wilkinson DS (ed) Proc. Intern. Symp. on Advanced Structural Materials. Pergamon Press, p 215Google Scholar
  11. 11.
    Watanabe T (1993) In: Erb U, Palumbo G (eds) Proc. the K.T. Aust Intern. Symp. on Grain Boundary Engineering. Can. Inst. Min. Met. Petro., p 57Google Scholar
  12. 12.
    Watanabe T (1993) Mater Sci Eng A166:11CrossRefGoogle Scholar
  13. 13.
    Palumbo G, Lehockey EM, Lin P (1998) J Metals 50(2):40Google Scholar
  14. 14.
    Watanabe T, Tsurekawa S (1999) Acta Mater 47:4171CrossRefGoogle Scholar
  15. 15.
    Watanabe T et al (eds) (2002) Proc.7th Japan-France Materials Science Seminar on, Interfaces and Related Phenomena, Ann. Chim. Sci. Mat., 27, SupplGoogle Scholar
  16. 16.
    Watanabe T, Tsurekawa S (eds) (2005) J. Mater. Sci., Spec. Issue on Grain Boundary and Interface Engineering, 40, No.4, pp 817–932Google Scholar
  17. 17.
    McLean M (1982) Metal Sci 16:31CrossRefGoogle Scholar
  18. 18.
    Watanabe T (2001) In: Gottstein G, Molodov DA (eds) Proc. First Joint Intern. Conf. on Recrystallization and Grain Growth. Springer-Verlag, p 11Google Scholar
  19. 19.
    Tsurekawa S, Watanabe T (2003) Mater Sci Forum 426–432:3819CrossRefGoogle Scholar
  20. 20.
    Watanabe T, Tsurekawa S, Zhao X, Zuo L (2006) Scripta Mater 54:969CrossRefGoogle Scholar
  21. 21.
    Mullins WW (1956) Acta Metall 4:421CrossRefGoogle Scholar
  22. 22.
    Adams B, Wright S, Kunze K (1993) Metall Trans A24:819CrossRefGoogle Scholar
  23. 23.
    Dingley D, Field D (1996) In: Hondros ED, McLean M (eds) Proc. the Donald McLean Symp. on Structural Materials. The Institute of Materials, p 23Google Scholar
  24. 24.
    Schwartz AD, Kumar M, Adams BL (eds) (2000) Electron Backscatter Diffraction in Materials Science, Kluwer Academic/Plenum PubGoogle Scholar
  25. 25.
    Martikainen HO, Lindroos VK (1981) Scand J Metall 10:3Google Scholar
  26. 26.
    Watanabe T, Suzuki Y, Tanii S, Oikawa H (1990) Phil Mag Lett 62:9CrossRefGoogle Scholar
  27. 27.
    Watanabe T, Fujii H, Oikawa H, Arai KI (1989) Acta Metall 37:941CrossRefGoogle Scholar
  28. 28.
    Watanabe T, Tsurekawa S, Fujii H, Kanno T (2005) Mater Sci Forum 495–497:1151CrossRefGoogle Scholar
  29. 29.
    Watanabe T (1993) Texture Microstruct 20:195CrossRefGoogle Scholar
  30. 30.
    Zuo L, Watanabe T, Esling C (1994) Z Metallkde 85:554Google Scholar
  31. 31.
    Tsurekawa S, Kawahara K, Okamoto K, Watanabe T, Faulkner R (2004) Mater Sci Eng A387–389:442CrossRefGoogle Scholar
  32. 32.
    Tsurekawa S, Okamoto K, Kawahara K, Watanabe T (2004) J Mater Sci 40:895CrossRefGoogle Scholar
  33. 33.
    Aust KT, Rutter JW (1959) Trans AIME 215:820Google Scholar
  34. 34.
    Watanabe T, Kitamura S, Karashima S (1980) Acta Metall 28:455CrossRefGoogle Scholar
  35. 35.
    Lejcek P, Hofmann S (1993) Interface Sci 1:163, (1996) Interface Sci 3:241Google Scholar
  36. 36.
    Molodov DA, Gottstein G, Heringhaus F, Shvindlerman LS (1997) Scripta Mater 37:207, (1998) Acta Mater 46:5627Google Scholar
  37. 37.
    Sheikh-Ali AD, Molodov DA, Garmestani H (2003) Scripta Mater 48:483CrossRefGoogle Scholar
  38. 38.
    Sheikh-Ali AD, Molodov DA, Garmestani H (2002) Scripta Mater 46:857CrossRefGoogle Scholar
  39. 39.
    Molodov DA, Sheikh-Ali AD (2004) Acta Mater 52:4377CrossRefGoogle Scholar
  40. 40.
    Molodov DA (2004) Mater Sci Forum 467–470:697CrossRefGoogle Scholar
  41. 41.
    Harada K, Tsurekawa S, Watanabe T, Palumbo G (2003) Scripta Mater 49:357CrossRefGoogle Scholar
  42. 42.
    Matsuzaki M, Yamada T, Jyuami K, Tsurekawa S, Watanabe T, Palumbo G (2004) Mat Res Soc Symp Proc 788:121Google Scholar
  43. 43.
    Watanabe T, Tsurekawa S, Palumbo G (2005) Solid State Phen 101–102:171CrossRefGoogle Scholar
  44. 44.
    Wang N, Wang Z, Aust KT, Erb U (1997) Acta Mater 45:1655CrossRefGoogle Scholar
  45. 45.
    Hibbard GD, McCrea JL, Palumbo G, Aust KT, Erb U (2002) Scripta Mater 47:83CrossRefGoogle Scholar
  46. 46.
    Fujii H, Tsurekawa S, Matsuzaki T, Watanabe T (2006) Phil Mag Lett 86:113CrossRefGoogle Scholar
  47. 47.
    Nakamichi S, Tsurekawa S, Morizono Y, Watanabe T, Nishida M, Chiba A (2005) J Mater Sci 40:3139CrossRefGoogle Scholar
  48. 48.
    He CS, Zhang YD, Zhao X, Zuo L et al (2003) Adv Eng Mater 5:579CrossRefGoogle Scholar
  49. 49.
    Zhang Y, He CS, Zhao X, Esling C, Zuo L (2004) Adv Eng Mater 6:310CrossRefGoogle Scholar
  50. 50.
    Zhang Y, He CS, Zhao X, Zuo L, Esling C, He J (2004) J Mag Mag Mater 284:287CrossRefGoogle Scholar
  51. 51.
    Zhang Y, Gey N, He C, Zhao X, Zuo L, Esling C (2004) Acta Mater 52:3467CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Esling C, Lecombe JS, He CS, Zhao X, Zuo L (2005) Acta Mater 53:5213CrossRefGoogle Scholar
  53. 53.
    Choi JK, Ohtsuka H, Xu Y, Choo W-Y (2000) Scripta Mater 43:221CrossRefGoogle Scholar
  54. 54.
    Enomoto M, Guo H, Tazuke Y, Abe YR, Shimotomai M (2001) Met Mater Trans 32A:445CrossRefGoogle Scholar
  55. 55.
    Hao XJ, Ohtsuka H, Wada H (2003) Mater Trans 44:2532CrossRefGoogle Scholar
  56. 56.
    Shimotomai M, Maruta K, Mine K, Matsui M (2003) Acta Mater 51:2921CrossRefGoogle Scholar
  57. 57.
    Hao XJ, Ohtsuka H, de Rango P, Wada H (2003) Mater Trans 44:211CrossRefGoogle Scholar
  58. 58.
    Hao XJ, Ohtsuka H (2004) Mater Trans 45:2622CrossRefGoogle Scholar
  59. 59.
    Joo HD, Choi JK, Kim SU, Shin NS, Koo YM (2004) Met Mater Trans 35A:1663CrossRefGoogle Scholar
  60. 60.
    Jaramillo RA, Babu SS, Ludtka GM et al (2005) Scripta Mater 52:461CrossRefGoogle Scholar
  61. 61.
    Enomoto M (2005) Mater Trans 46:1088CrossRefGoogle Scholar
  62. 62.
    Budke E, Herzig CH, Wever H (1991) Phys Stat Sol 127:87CrossRefGoogle Scholar
  63. 63.
    Hillert M (1975) Met Trans 6A:5CrossRefGoogle Scholar
  64. 64.
    Lange WH, Enomoto M, Aaronson HI (1988) Met Trans 19A:427CrossRefGoogle Scholar
  65. 65.
    Massalski TB (2002) Met Mater Trans 33A:2277CrossRefGoogle Scholar
  66. 66.
    Hillert M (2002) Met Mater Trans 33A:2299CrossRefGoogle Scholar
  67. 67.
    Watanabe T, Obara K, Tsurekawa S, Gottstein G (2005) Z Metallkde 96:1196CrossRefGoogle Scholar
  68. 68.
    Matsuzaki T, Sasaki T, Tsurekawa S, Watanabe T (1999) Mater Sci Forum 304–306:585CrossRefGoogle Scholar
  69. 69.
    Tsurekawa S, Harada K, Sasaki T, Matsuzaki T, Watanabe T (2000) Mater Trans JIM 41:991CrossRefGoogle Scholar
  70. 70.
    Watanabe T, Nishizawa S, Tsurekawa S (2005) In: Turchi P et al (eds) Proc. the 3rd Intern. Alloy Conf. (IAC-3), “ Complex Inorganic Solids: Structure, Stability, and Magnetic Properties of Alloys”, Springer, pp 327–336Google Scholar
  71. 71.
    Molodov DA, Konijnenberg PJ (2006) Scripta Mater 54:977CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Tadao Watanabe
    • 1
    • 2
    Email author
  • Sadahiro Tsurekawa
    • 1
  • Xiang Zhao
    • 2
  • Liang Zuo
    • 2
  • Claude Esling
    • 3
  1. 1.Department of NanomechanicsGraduate School of Engineering, Tohoku UniversitySendaiJapan
  2. 2.Key Laboratory of Electromagnetic Processing of Materials (EPM)Northeastern UniversityShenyangChina
  3. 3.LETAM, CNRS-UMR 7078University of MetzMetz Cedex 01France

Personalised recommendations