Journal of Materials Science

, Volume 41, Issue 19, pp 6403–6408 | Cite as

An investigation of the effect of Ti, Pd and Zr on the dehydriding kinetics of MgH2

  • L. E. A. BerlouisEmail author
  • P. Honnor
  • P. J. Hall
  • S. Morris
  • S. B. Dodd


The effect of additives Ti, Pd and Zr on the rate of hydrogen desorption from MgH2 is investigated using high-pressure differential scanning calorimetry. Van’t Hoff analysis as well as X-ray powder diffraction measurements confirm that no new intermetallic phases are formed in these systems but enhanced dehydriding kinetics are obtained in the presence of Pd and Zr. For the Mg–Zr composite, Zr precipitates are formed throughout the material on heating to 500 °C but these do not grow with further thermal cycling. The desorption rate for all the composites was found to increase with temperature as well as pressure difference between experimental and equilibrium pressures. A value of 114 ± 4 kJ mol−1 was obtained for the activation energy for dehydriding of the Mg–Ti–Pd composite.


Hydride Mechanical Alloy Physical Vapour Deposition MgH2 Hydrogen Desorption 


  1. 1.
    Zaluska A, Zaluski L, Ström-Olsen JO (1999) J Alloys Comp 288:217CrossRefGoogle Scholar
  2. 2.
    Higuchi K, Yamamoto K, Kajioka H, Toiyama K, Honda M, Orimo S, Fujii H (2002) J Alloys Comp 330:526CrossRefGoogle Scholar
  3. 3.
    Imamura H, Sakasai N, Kajii Y (1996) J Alloys Comp 232:218CrossRefGoogle Scholar
  4. 4.
    Nagai H, Tomizawa H, Ogasawara T, ShojiKI (1990) J Less-Common Met 157:15CrossRefGoogle Scholar
  5. 5.
    Orimo S, Fujii H (1998) Intermetallics 6:185CrossRefGoogle Scholar
  6. 6.
    Orimo S, Züttel A, Ikeda K, Saruki S, Fukunaga T, Fujii H, Schlapbach L (1999) J Alloys Comp 293–295:437CrossRefGoogle Scholar
  7. 7.
    Terxieva M, Khrussanova M, Peshev P, Radev D (1995) Int J Hydrogen Energy 20:53CrossRefGoogle Scholar
  8. 8.
    Dutta K, Mandal P, Ramakrishna K, Srivastava ON (1994) Int J Hydrogen Energy 19:253CrossRefGoogle Scholar
  9. 9.
    Guoxian L, Erde W, Shoushi F (1995) J Alloys Comp 223:111CrossRefGoogle Scholar
  10. 10.
    Gardiner RW, Viney BW (1995) ‘Production of bulk alloys by PVD’, 124th TMS Annual meeting, Las Vegas, USAGoogle Scholar
  11. 11.
    Stander CM (1977) J Inorg Nucl Chem 39:221CrossRefGoogle Scholar
  12. 12.
    Song M-Y (1990) J Less-Common Met 157:155CrossRefGoogle Scholar
  13. 13.
    Bohmhammel K, Christ B, Wolf G (1998) Thermochim Acta 310:167CrossRefGoogle Scholar
  14. 14.
    Dodd SB, Morris S, Ward-Close M (1999) Production of Mg–Ti by MA’, 128th TMS Annual meeting, San Diego, USAGoogle Scholar
  15. 15.
    Yamamoto K, Higuchi K, Kajioka H, Sumida H, Orimo S, Fujii H (2002) J Alloys Comp 330:352CrossRefGoogle Scholar
  16. 16.
    Berlouis LEA, Cabrera E, Hall-Barientos E, Hall PJ, Dodd SB, Morris S, Imam MA (2001) J Mater Res 16:45CrossRefGoogle Scholar
  17. 17.
    Bogdanovic B, Bohmhammel K, Christ B, Reiser A, Schlichte K, Vehlen R, Wolf U (1999) J Alloys Comp 282:84CrossRefGoogle Scholar
  18. 18.
    Dodd S et al (1998) Corrosion Reviews XVI:1Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • L. E. A. Berlouis
    • 1
    Email author
  • P. Honnor
    • 1
  • P. J. Hall
    • 2
  • S. Morris
    • 3
  • S. B. Dodd
    • 3
  1. 1.Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
  2. 2.Chemical and Process EngineeringUniversity of StrathclydeGlasgowUK
  3. 3.Structures and Materials Centre-A7QinetiQ Ltd.HantsUK

Personalised recommendations