Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7798–7807 | Cite as

Interface structure and strain development during compression tests of Al2O3/Nb/Al2O3 sandwiches

  • C. Scheu
  • Y. Liu
  • S. H. Oh
  • D. Brunner
  • M. Rühle
Article

Abstract

The interface structure of an Al2O3/Nb/Al2O3 sandwich produced by solid-state diffusion bonding was investigated in detail by various transmission electron microscopy (TEM) methods. The joint possessed at one interface a \( {\hbox{(110)}}_{{{{\rm Nb}}}} {{ \,||\, (0001)}}_{{{{\rm Al}}_{{{\rm 2}}} {{\rm O}}_{{{\rm 3}}} }} \), \( {\hbox{[1{{$\bar{1}$}}0]}}_{{{{\rm Nb}}}} {{ \,||\, [2{{\bar{1}}}{{\bar{1}}}0]}}_{{{{\rm Al}}_{{{\rm 2}}} {{\rm O}}_{{{\rm 3}}} }} \), and on the other interface a \( {\hbox{(1{{${1}$}}0)}}_{{{{\rm Nb}}}} {{ \,||\, (0001)}}_{{{{\rm Al}}_{{{\rm 2}}} {{\rm O}}_{{{\rm 3}}} }} \) and \( {\hbox{[1{{$\bar{1}$}}0]}}_{{{{\rm Nb}}}} {{ || [0{{\bar{1}}}{{\bar{1}}}0]}}_{{{{\rm Al}}_{{{\rm 2}}} {{\rm O}}_{{{\rm 3}}} }} \) orientation relationship. At both interfaces, misfit dislocations formed to compensate the lattice mismatch as found by high-resolution transmission electron microscopy (HRTEM). Electron energy-loss near edge structure (ELNES) studies revealed that the interface is terminating with an Al layer resulting in Al–Nb bonds. Identical sandwiches were investigated on the meso- and macroscopic scale by performing compression tests and simultaneously monitoring the strain development at (001)Nb and \( (1{{\bar{{{1}}}}}0)_{{\rm Nb}} \) crystal faces. The full-field optical strain measurements (FFOM) revealed that the strain is localized at the interfaces when observed at the (001)Nb face while it is along the maximum shear directions of 36–54° inclined to the interface when observed at the \( (1{{\bar{{{1}}}}}0) \) face. The strain localization along a specific maximum shear direction results in the cleavage of Al2O3, always initiating from the interface possessing the \( {\hbox{(110)}}_{{{{\rm Nb}}}} {{ \,||\, (0001)}}_{{{{\rm Al}}_{{{\rm 2}}} {{\rm O}}_{{{\rm 3}}} }} \) and \( {\hbox{[1{{$\bar{1}$}}0]}}_{{{{\rm Nb}}}} {{ \,||\, [0{{\bar{1}}}{{\bar{1}}}0]}}_{{{{\rm Al}}_{{{\rm 2}}} {{\rm O}}_{{{\rm 3}}} }} \) orientation relationship.

Keywords

HRTEM ELNES Nb/Al2O3 interfaces Strain measurements 

Notes

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. The authors wish to thank M. Bartsch and U. Messerschmidt for a fruitful cooperation within the DFG project and F. Ernst for his contribution to the project application. Helpful discussions with R. Cannon are acknowledged. The authors thank W. Kurtz for the diffusion bonding of the specimen and U. Salzberger for the TEM specimen preparation. The authors also wish to thank G. Dehm for careful reading of the manuscript.

References

  1. 1.
    Burger K, Mader W, Rühle M (1987) Ultramicroscopy 22:1CrossRefGoogle Scholar
  2. 2.
    Mader W (1989) Z Metallkde 80(3):139Google Scholar
  3. 3.
    Mayer J, Mader W, Knauss D, Ernst F, Rühle M (1990) Mat Res Soc Symp Proc 183:55CrossRefGoogle Scholar
  4. 4.
    Mayer J, Flynn CP, Rühle M (1990) Ultramicroscopy 33:51CrossRefGoogle Scholar
  5. 5.
    Knauss D, Mader W (1991) Ultramicroscopy 37:247CrossRefGoogle Scholar
  6. 6.
    Mayer J, Gutekunst G, Möbus G, Dura JA, Flynn CP, Rühle M (1992) Acta Metall Mater 40:S217CrossRefGoogle Scholar
  7. 7.
    Bruley J, Brydson R, Müllejans H, Mayer J, Gutekunst G, Mader W, Knauss D, Rühle M (1994) J Mater Res 9(10):2574CrossRefGoogle Scholar
  8. 8.
    Vitek V, Gutekunst G, Mayer J, Rühle M (1995) Phil Mag A 71(6):1219CrossRefGoogle Scholar
  9. 9.
    Kruse C, Finnis MW, Lin JS, Payne MC, Milman VY, De Vita A, Gillan MJ (1996) Phil Mag Lett 73:733CrossRefGoogle Scholar
  10. 10.
    Wagner T, Lorenz M, Rühle M (1996) J Mater Res 11(5):1255CrossRefGoogle Scholar
  11. 11.
    Gutekunst G, Mayer J, Rühle M (1997) Phil Mag A 75(5):1329CrossRefGoogle Scholar
  12. 12.
    Gutekunst G, Mayer J, Vitek V, Rühle M (1997) Phil Mag A 75(5):1357CrossRefGoogle Scholar
  13. 13.
    Finnis MW (1998) Phys Stat Sol A 166:397CrossRefGoogle Scholar
  14. 14.
    Verdozzi C, Jennison DR, Schultz PA, Sears MP (1999) Phys Rev Lett 82:799CrossRefGoogle Scholar
  15. 15.
    Levay A, Möbus G, Vitek V, Rühle M, Tichy G (1999) Acta Mater 47(15):4143CrossRefGoogle Scholar
  16. 16.
    Batyrev I, Alavi A, Finnis M (2000) Phy Rev B 62(7):4698CrossRefGoogle Scholar
  17. 17.
    Durbin SM, Cunningham JE, Mochel ME, Flynn CP (1981) J Phys F 11:L223CrossRefGoogle Scholar
  18. 18.
    Mader W (1987) Mat Res Soc Symp Proc 82:403CrossRefGoogle Scholar
  19. 19.
    Korn D, Elssner G, Cannon RM, Rühle M (2002) Acta Mater 50:3881CrossRefGoogle Scholar
  20. 20.
    Cannon RM, Korn D, Elssner G, Rühle M (2002) Acta Mater 50:3903CrossRefGoogle Scholar
  21. 21.
    Soyez G (1996) PhD Thesis, University of StuttgartGoogle Scholar
  22. 22.
    Soyez G, Elssner G, Rühle M, Raj R (1998) Acta Mater 46(10):3571CrossRefGoogle Scholar
  23. 23.
    Soyez G, Elssner G, Rühle M, Raj R (2000) J Mater Sci 35:1087CrossRefGoogle Scholar
  24. 24.
    Bartsch M, Zhang Z-F, Scheu C, Rühle M, Messerschmidt U (2004) Z Metallkde 95(9):779CrossRefGoogle Scholar
  25. 25.
    Liu Y, Brunner D (2002) Z Metallkde 93(5):444CrossRefGoogle Scholar
  26. 26.
    Liu Y, Kohnle C, Brunner D, Rühle M (2003) Z Metallkde 94(6):694CrossRefGoogle Scholar
  27. 27.
    Korn D, Elssner G, Fischmeister HF, Rühle M (1992) Acta Metall Mater 40:S355CrossRefGoogle Scholar
  28. 28.
    Kurtz W (2002) Z Metallkde 93(5):432CrossRefGoogle Scholar
  29. 29.
    Batyrev I, Alavi A, Finnis M (1999) Faraday Discuss 114:33CrossRefGoogle Scholar
  30. 30.
    Strecker A, Salzberger U, Mayer J (1993) Prakt Metallogr 30:482Google Scholar
  31. 31.
    Müllejans H, Bruley J (1995) J Microscopy 180:12CrossRefGoogle Scholar
  32. 32.
    Scheu C (2002) J Microscopy 205:52CrossRefGoogle Scholar
  33. 33.
    Bitzek L, Wunderlich WE, Mader W (1988) Prakt Met 25:384Google Scholar
  34. 34.
    Burger K, Rühle M (1989) Ultramicroscopy 29:88CrossRefGoogle Scholar
  35. 35.
    Saiz E, Tomsia AP, Cannon RM (1998) In: Tomsia AP, Glaeser AM (eds) Ceramic microstructures: control at the atomic level, Plenum PressGoogle Scholar
  36. 36.
    Gao M, Scheu C, Wagner T, Kurtz W, Rühle M (2002) Z Metallkde 93(5):438CrossRefGoogle Scholar
  37. 37.
    Scheu C (2004) Interface Sci 12(1):127CrossRefGoogle Scholar
  38. 38.
    Duesbery MS, Foxall RA (1969) Phil Mag 20:719CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • C. Scheu
    • 1
    • 2
  • Y. Liu
    • 1
    • 3
  • S. H. Oh
    • 1
    • 4
  • D. Brunner
    • 1
  • M. Rühle
    • 1
  1. 1.Max-Planck-Institut für MetallforschungStuttgartGermany
  2. 2.Department Physical Metallurgy and Materials TestingMontanuniversität LeobenLeobenAustria
  3. 3.Institute for Physics & Centre for Micro- and NanotechnologyTechnische Universität IlmenauIlmenauGermany
  4. 4.Erich Schmid Institut für Materialwissenschaft, Österreichische Akademie der WissenschaftenLeobenAustria

Personalised recommendations