Advertisement

Journal of Materials Science

, Volume 41, Issue 19, pp 6215–6220 | Cite as

New approach towards preparation of efficient gas diffusion-type oxygen reduction electrode

  • Jerzy P. Lukaszewicz
  • Shin Imaizumi
  • Masayoshi Yuasa
  • Kengo Shimanoe
  • Noboru Yamazoe
Article

Abstract

A novel method by combining NAC-FAS (NAnometer-sized Crystal Formation in Alcoholic Solutions) method and mechanical milling treatment was successfully applied for dispersing perovskite type oxide LaMnO3 finely on carbon support. Microscopic observation revealed that nano-sized oxide particles were dispersed fairly well in the carbon support. The gas diffusion-type electrode prepared by means of reducing number and quantity of chemicals exhibited more excellent oxygen reduction activity than the electrodes containing LaMnO3 prepared by RHP (Reverse Homogeneous Precipitation) method. It allowed current density as high as 300 mA cm−2 at −80 mV (vs. Hg/HgO) in 8 M KOH at 60 °C under air flow.

Keywords

Oxygen Reduction Reverse Micelle Cathodic Polarization Carbon Support Perovskite Type Oxide 

References

  1. 1.
    Motoo S, Watanabe M, Furuya N (1984) J Electroanal Chem 160:351CrossRefGoogle Scholar
  2. 2.
    Sugawara M, Ohno M, Matsuki K (1991) Chem Lett 1465Google Scholar
  3. 3.
    Miura N, Horiuchi H, Shimizu Y, Yamazoe N (1987) Nippon Kagaku Kaish 1987:617CrossRefGoogle Scholar
  4. 4.
    Watanabe M, Tomikawa M, Motoo S (1985) J Electroanal Chem 195:81CrossRefGoogle Scholar
  5. 5.
    Aikawa H (1996) Soda & Chorine 93Google Scholar
  6. 6.
    Zhang HM, Teraoka Y, Yamazoe N (1987) Chem Lett 4:665CrossRefGoogle Scholar
  7. 7.
    Matsuda Y, Yamashita K, Takatsu Y (1983) Denki Kagaku 51:925Google Scholar
  8. 8.
    King WJ, Tseung ACC (1974) Electrochem Acta 19:485CrossRefGoogle Scholar
  9. 9.
    Zen JM, Goodenough JB, Manoharam R (1992) J Appl Electrochem 22:140CrossRefGoogle Scholar
  10. 10.
    Shimizu Y, Uemura K, Matsuda H, Miura N, Yamazoev N (1990) J Electrochem Soc 137:3430CrossRefGoogle Scholar
  11. 11.
    Hyodo T, Shimizu Y, Miura N, Yamazoe N (1994) Denki Kagaku 62:158Google Scholar
  12. 12.
    Hayashi M, Uemura H, Shimanoe K, Miura N, Yamazoev (1998) Electrochem Solid-State Lett 1:268CrossRefGoogle Scholar
  13. 13.
    Miura N, Hayashi M, Hyodo T, Yamazoe N (1999) Mat Sci Forum 315–317:562CrossRefGoogle Scholar
  14. 14.
    Hyodo T, Hayashi M, Mitsutake S, Miura N, Yamazoe N (1997) J Appl Electrochem 27:745CrossRefGoogle Scholar
  15. 15.
    Hyodo T, Hayashi M, Miura N, Yamazoe N (1996) J Electrochem Soc 143:L266CrossRefGoogle Scholar
  16. 16.
    Teraoka Y, Nanri S, Moriguchi I, Kagawa S, Shimanoe K, Yamazoe N (2000) Chem Lett 1202Google Scholar
  17. 17.
    Teraoka Y, Taura Y, Moriguchi I, Kagawa S (1995) Kagaku Kagaku Ronbunshu 21:1032CrossRefGoogle Scholar
  18. 18.
    Imaizumi S, Shimanoe K, Teraoka Y, Miura N, Yamazoe N (2004) J Electrochem Soc 151:A1559CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Jerzy P. Lukaszewicz
    • 1
  • Shin Imaizumi
    • 2
  • Masayoshi Yuasa
    • 2
  • Kengo Shimanoe
    • 3
  • Noboru Yamazoe
    • 3
  1. 1.Faculty of ChemistryNicholas Copernicus UniversityTorunPoland
  2. 2.Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering SciencesKyushu UniversityKasuga-shi, FukuokaJapan
  3. 3.Department of Material Sciences, Faculty of Engineering SciencesKyushu UniversityKasuga-shi, FukuokaJapan

Personalised recommendations