Advertisement

Journal of Materials Science

, Volume 41, Issue 19, pp 6333–6338 | Cite as

The influence of TiO2 polymorph, mechanical milling and subsequent sintering on the formation of Ti-substituted spinel-related Li0.5Fe2.5O4

  • H. M. Widatallah
  • X. -L. Ren
  • I. A. Al-Omari
Article

Abstract

Single-phased spinel-related titanium-substituted Li0.5Fe2.5O4 has been synthesized by sintering in air a mechanically pre-milled mixture of lithium carbonate, corundum-related iron (III) oxide and the rutile polymorph of titanium (IV) oxide at 700 °C (12 h). This temperature is ca. 450–500 °C less than the temperatures at which the material is normally prepared by conventional ceramic techniques. On replacing the rutile polymorph of titanium (IV) oxide in the pre-milled mixture by the anatase form the formation of single-phased titanium-substituted Li0.5Fe2.5O4 was not achieved even after sintering the mixture at 1,000 °C (12 h).

Keywords

TiO2 Milling Rutile Reflection Peak Increase Milling Time 

Notes

Acknowledgement

We thank the Abdus Salam International Center for Theoretical Physics, ICTP, (Italy), and SIDA (Sweden) for financial and research support to HMW. We also thank the China Scholarship Council for financial support to XR. We are grateful to Professor FJ Berry for helpful discussion.

References

  1. 1.
    Baba PD, Argentina GM (1974) IEEE Trans Microwave Theory Technol 22:654Google Scholar
  2. 2.
    des Barros F, Viccard PJ, Artman JO (1968) Phys Lett A 27:374CrossRefGoogle Scholar
  3. 3.
    Widatallah HM, Johnson C, Berry FJ, Pekala M (2001) Solid State Commun 120:171CrossRefGoogle Scholar
  4. 4.
    Widatallah HM, Berry FJ (2002) J Solid State Chem 164:230CrossRefGoogle Scholar
  5. 5.
    Scharner S, Weppner W, Schim-Beurmann P (1997) J Solid State Chem 134:170CrossRefGoogle Scholar
  6. 6.
    Widatallah HM, Moore EA (2004) J Phys Chem Solids 65:1663CrossRefGoogle Scholar
  7. 7.
    Yousif AA, Elzain ME, Mazen SA, Sutherland HH, Abdallah MH, Mansour SF (1994) J Phys: Condens Matter 6:5717Google Scholar
  8. 8.
    Kishan P, Prakash C, Baijal JS, Laroia KK (1984) Phys Stat Sol (A) 84:35CrossRefGoogle Scholar
  9. 9.
    McCurrie RA (1994) Ferromagnetic materials structure and properties, Academic Press, LondonGoogle Scholar
  10. 10.
    Cruskova A, Lipka J, Slama J, Toth I, Seberini M (1990) Phys Stat Solid A 122:K171CrossRefGoogle Scholar
  11. 11.
    Sepelak V (2002) Ann Chim Sci Mat 27:61CrossRefGoogle Scholar
  12. 12.
    Jiang JS, Gao L, Guo JK, Yang XL, Shen HI (1999) J Inorg Mater (China) 14:390Google Scholar
  13. 13.
    Kraus W, Nolze G (1996) J Appl Cryst 29:301CrossRefGoogle Scholar
  14. 14.
    Berry FJ, Greaves C, Mcmanus J, Mortimer M, Oates G (1997) J Solid State Chem 130:272CrossRefGoogle Scholar
  15. 15.
    Berry FJ, Marco JF, Stewart SJ, Widatallah HM (2001) Solid State Commun 117:235CrossRefGoogle Scholar
  16. 16.
    Tabuchi M, Ado K, Sakaebe H, Masquelier C, Kageyama H, Nakamura O (1995) Solid State Ionics 79:220CrossRefGoogle Scholar
  17. 17.
    Berry FJ, Wynn P, Jiang JZ, Mørup S (2001) J Mater Sci 36:3637CrossRefGoogle Scholar
  18. 18.
    Riyas S, Ahmed Yasir V, Mohan das PN (2002) Bull Mater Sci 25:267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • H. M. Widatallah
    • 1
    • 2
    • 4
  • X. -L. Ren
    • 3
  • I. A. Al-Omari
    • 1
  1. 1.Department of PhysicsSultan Qaboos UniversityMuscatOman
  2. 2.The Abdus Salam International Center for Theoretical Physics (ICTP)TriesteItaly
  3. 3.Department of ChemistryOpen UniversityMilton KeynesUK
  4. 4.Department of physicsUniversity of KhartoumKhartoumSudan

Personalised recommendations