Journal of Materials Science

, Volume 41, Issue 19, pp 6237–6244 | Cite as

Impact–fatigue behaviour of unidirectional carbon fibre reinforced polyetherimide (PEI) composites

  • Tamer SınmazçelikEmail author
  • A. Armağan Arıcı
  • Volkan Günay


Impact fatigue properties of unidirectional carbon fibre-reinforced polyetherimide (PEI) composites was evaluated by subjecting standard izod impact samples to low velocity impact loading at energy levels ranging 0.16–1.08 J by using Ceast Model Resil 25, a pendulum type instrumented impact test system. The effect of the previous low velocity impacts on the impact properties of the laminates was investigated. On the other hand materials were subjected to repeated low velocity impact tests up to fracture. Results of repeated impact study are reported in terms of peak load, absorbed energy and number of impacts. Fractographic analysis revealed the fracture by primary debonding, with fibre breakage and pullout in the tensile zone, but a shear fracture of fibre bundles in the compressive zone of the specimen.


Fatigue Crack Initiation Impact Energy Neutral Axis Final Impact 


  1. 1.
    Sohn MS, Hu XZ (1995) Composites 26(12):849CrossRefGoogle Scholar
  2. 2.
    Papanicolaou GC, Stavropoulus CD (1995) Composites 26(7):517CrossRefGoogle Scholar
  3. 3.
    Novak RC, Decrecent MA (1972) In: Impact behaviour of unidirectional composites. ASTM STP 497, American Society for Testing and Materials, New York, pp 311Google Scholar
  4. 4.
    Caprino G (1983) J Mater Sci 18(8):2269CrossRefGoogle Scholar
  5. 5.
    Caprino G (1985) J Compos Mater 18:508CrossRefGoogle Scholar
  6. 6.
    Roy R, Sarkar BK, Bose NR (2001) Composites: Part A 32:871CrossRefGoogle Scholar
  7. 7.
    Lal KM (1986) J Reinf Plast Compos 2:226CrossRefGoogle Scholar
  8. 8.
    Cantwell WJ, Curtis PT, Morton J (1984) Int J Fatigue 6(2):113CrossRefGoogle Scholar
  9. 9.
    Wyrick DA, Adams DF (1988) J Compos Mater 22:749CrossRefGoogle Scholar
  10. 10.
    Jang BP, Kowbel W, Jang BZ (1992) Compos. Sci. Technol 44:107CrossRefGoogle Scholar
  11. 11.
    Ho KC, Hwang JR, Doong JL (1997) J Reinf Plast Compos 16(10):903CrossRefGoogle Scholar
  12. 12.
    Yang P, Liu Y, Xu F (1998) J Mater Eng Perform 7(5):677CrossRefGoogle Scholar
  13. 13.
    Shin HS, Maekawa I (1997) Damage and failure interfaces. Balkema, Rotterdam, pp 343Google Scholar
  14. 14.
    Lhymn C (1985) J Mater Sci Lett 4:1221CrossRefGoogle Scholar
  15. 15.
    Lhymn C (1985) J Mater Sci Lett 4:1429CrossRefGoogle Scholar
  16. 16.
    Rotem A (1988) J Compos Technol Res Summer 74Google Scholar
  17. 17.
    Tamuzs VP, Kuksenco VS (1981) In: Fracture micromechanics of polymer materials The Hague, AmsterdamGoogle Scholar
  18. 18.
    Jang BP, Huang CT, Hsieh CY, Kowbel W, Jang BZ (1991) J Compos Mater 25:1171CrossRefGoogle Scholar
  19. 19.
    Friedrich K, Karger Kocsis J (1989) In: Fractography and failure mechanisms of polymers and composites. Elsevier Applied Science, Banking, p 437Google Scholar
  20. 20.
    Lee CS, Hwang W, Park HC, Han KS (1999) Compos. Sci. Technol. 59:1789CrossRefGoogle Scholar
  21. 21.
    Sohn MS, Hu XZ, Kim JK, Walker L (2000) Composites: Part B 31:681CrossRefGoogle Scholar
  22. 22.
    Gdoutos EE, Pilakoutas K, Rodopoulos CA (2000) Failure analysis of industrial composite materials, McGraw-Hill Inc, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Tamer Sınmazçelik
    • 1
    • 2
    Email author
  • A. Armağan Arıcı
    • 1
  • Volkan Günay
    • 2
  1. 1.Mechanical Engineering DepartmentKocaeli UniversityİzmitTurkey
  2. 2.Materials InstituteTUBITAK-Marmara Research CentreGebzeTurkey

Personalised recommendations