Advertisement

Journal of Materials Science

, Volume 41, Issue 19, pp 6435–6440 | Cite as

Water vapor absorption and proton conductivity of (Ba1−xLax)2In2O5+x

  • Katsuyoshi Kakinuma
  • Aya Tomita
  • Hiroshi Yamamura
  • Tooru Atake
Article

Abstract

The proton conductivity of (Ba1−xLax)2In2O5+x system has been investigated as a function of the La content, temperature and amount of absorbed water. The proton conductivity increased with La content up to x = 0.10, to reach a maximum of 1.12 × 10−5 (S/cm) at 400 °C. From that point on, it decreased. From the results of thermogravimetry and mass spectra, we confirmed that the water was absorbed in the (Ba1−xLax)2In2O5+x system, in a maximum quantity of 0.14 mol/mol (sample). The proton conductivity increased monotonically with the quantity of water uptake, suggesting that this variable is one of the dominant parameter of proton conductivity in this system.

Keywords

Oxygen Vacancy Oxygen Partial Pressure Proton Conductivity Water Vapor Pressure Mobile Proton 

Notes

Acknowledgement

This study was supported by the High Technology Research Project at KANAGAWA University from the Ministry of Education, Science, Sports and Culture and by a Grant-in-Aid for Scientific Research from the same Ministry.

References

  1. 1.
    Goodenough JB, Ruiz-Diaz JE, Zhen YS (1990) Solid State Ionics 44:21CrossRefGoogle Scholar
  2. 2.
    Adler SB, Reimer JA, Baltisberger J, Werner U (1004) J Am Chem Soc 116:675CrossRefGoogle Scholar
  3. 3.
    Kuramochi H, Mori T, Yamamura H, Kobayashi H, Mitamura T (1994) J Ceram Soc Jpn 102:1159CrossRefGoogle Scholar
  4. 4.
    Yao T, Uchimoto Y, Kinuhata M, Inagaki T, Yoshida H (2000) Solid State Ionics 132:189CrossRefGoogle Scholar
  5. 5.
    Yamamura H, Hamazaki H, Kakinuma K (1999) J Korean Phys Soc 35:S200Google Scholar
  6. 6.
    Kakinuma K, Yamamura H, Haneda H, Atake T (1999) J Thermal Anal Calorimetry 57:737CrossRefGoogle Scholar
  7. 7.
    Kakinuma K, Yamamura H, Haneda H, Atake T (2001) Solid State Ionics 140:301CrossRefGoogle Scholar
  8. 8.
    Kakinuma K, Yamamura H, Haneda H, Atake T (2002) Solid State Ionics 154/155:571CrossRefGoogle Scholar
  9. 9.
    Uchimoto Y, Yao T, Takagi H, Inagaki T, Yoshida H (2000) Electrochemistry 68:531Google Scholar
  10. 10.
    Kakinuma K, Yamamura H, Atake T (2002) J Thermal Anal Calorimetry 69:897CrossRefGoogle Scholar
  11. 11.
    Kakinuma K, Takahashi N, Yamamura H, Nomura K, Atake T (2004) Solid State Ionics 168:69CrossRefGoogle Scholar
  12. 12.
    Lin Y, Withers RL, Gerald JF (2003) J Solid State Chem 170:247CrossRefGoogle Scholar
  13. 13.
    Mitome M, Okamoto M, Bando Y, Yamamura H (2001) J Vac Sci Technol B 19:2284CrossRefGoogle Scholar
  14. 14.
    Uchimoto Y, Takagi H, Yao T, Ozawa N, Inagaki T, Yoshida H (2001) J Synchrotron Radiat 8:857CrossRefGoogle Scholar
  15. 15.
    Zhang GB, Smyth DM (1995) Solid State Ionics 82:153CrossRefGoogle Scholar
  16. 16.
    Schober T (1998) Solid State Ionics 109:1CrossRefGoogle Scholar
  17. 17.
    Schober T, Friedrich J, Krug F (1997) Solid State Ionics 99:9CrossRefGoogle Scholar
  18. 18.
    Fischer W, Reck G, Schober T (1999) Solid State Ionics 116:211CrossRefGoogle Scholar
  19. 19.
    Fisher CAJ, Islam MS (1999) Solid State Ionics 118:355CrossRefGoogle Scholar
  20. 20.
    Kakinuma K, Arisaka T, Yamamura H, Atake T (2004) Solid State Ionics 175:139CrossRefGoogle Scholar
  21. 21.
    Nowick AS, Liang KC (2000) Solid State Ionics 129:201CrossRefGoogle Scholar
  22. 22.
    Schober T (2001) Solid State Ionics 145:319CrossRefGoogle Scholar
  23. 23.
    Nomura K, Takeuchi T, Kageyama H, Miyazaki Y (2003) Solid State Ionics 99:162Google Scholar
  24. 24.
    Hashimoto T, Inagaki Y, Kishi A, Dokiya M (2000) Solid State Ionics 128:227CrossRefGoogle Scholar
  25. 25.
    Yamaguchi S, Nakamura K, Higuchi T, Shin S, Iguchi Y (2000) Solid State Ionics 191:136Google Scholar
  26. 26.
    Ma G, Shimura T, Iwahara H (1998) Solid State Ionics 110:103CrossRefGoogle Scholar
  27. 27.
    Bohn HG, Schober T (2000) J Am Ceram Soc 83:768CrossRefGoogle Scholar
  28. 28.
    Arons RR (1999) J Eur Ceram Soc 19:811CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Katsuyoshi Kakinuma
    • 1
  • Aya Tomita
    • 1
  • Hiroshi Yamamura
    • 1
  • Tooru Atake
    • 2
  1. 1.Department of Applied Chemistry, Faculty of EngineeringKanagawa UniversityKanagawa-ku, YokohamaJapan
  2. 2.Materials and Structures LaboratoryTokyo Institute of TechnologyMidori-ku, YokohamaJapan

Personalised recommendations