Journal of Materials Science

, Volume 42, Issue 22, pp 9469–9475 | Cite as

Cone crack initiation induced by contact from cylindrical punch

  • Y. J. XieEmail author
  • D. A. Hills
  • X. Z. Hu


The critical load for cone crack initiation in a brittle material indented by a rigid cylindrical punch is related to the fracture toughness of the material and the punch radius through the classical energy principles. The strain energy required to form an embryo cone crack on a flaw-free surface adjacent to the punch edge is formulated, from which the critical load for cone cracking is then determined. The present analysis shows that the stress singularity close to the sharp contact edge is akin to that a sharp crack tip. The results in this study can be used to set up a simple and practical technique for evaluating some strength-related properties of brittle materials such as the fracture toughness.


Fracture Toughness Stress Intensity Factor Critical Load Energy Release Rate Stress Singularity 


  1. 1.
    Frank FC, Lawn BR (1967) Proc R Soc 299:291Google Scholar
  2. 2.
    Sneddon IN (1946) Camb Philos Soc 42:29CrossRefGoogle Scholar
  3. 3.
    Mouginot R, Maugis D (1985) J Mater Sci 20:4354CrossRefGoogle Scholar
  4. 4.
    Kocer C, Collins RE (1998) J Am Soc 81(7):1736Google Scholar
  5. 5.
    Fischer-Cripps AC (1997) J Mater Sci 32:1277CrossRefGoogle Scholar
  6. 6.
    Warren R (1978) Acta Metall 26:1759CrossRefGoogle Scholar
  7. 7.
    Fischer-Cripps AC, Coolins RE (1994) J Mater Sci 29:2216CrossRefGoogle Scholar
  8. 8.
    Wang R, Katsube N, Seghi RR, Rokhlin SI (2003) J Mater Sci 38:1589CrossRefGoogle Scholar
  9. 9.
    Roesler FC (1956) Proc R Soc 69:981Google Scholar
  10. 10.
    Giannakopoulos AE, Lindley TC, Suresh S (1998) Acta Mater 46:2955CrossRefGoogle Scholar
  11. 11.
    Tada H, Paris PC, Irwin GR (1973) Stress analysis of cracks handbook. Dil Rsearch Corporation, HellertownGoogle Scholar
  12. 12.
    Rooke DPG, Cartwright DJ (1976) Compendium of stress intensity factors. Her Majesty’s Stationary Office, LondonGoogle Scholar
  13. 13.
    Murakami Y (1987) Stress intensity factors Handbook. Pergammon Press, New YorkGoogle Scholar
  14. 14.
    Eshelby JD (1951) Phil Trans R Soc Lond Ser A 244:87CrossRefGoogle Scholar
  15. 15.
    Sih GC (1969) Inelastic behavior of solids. Mc-Graw-Hill Book, Co., New York, p 607Google Scholar
  16. 16.
    Budiansky B, Rice JR (1973) ASME J Appl Mech 40:201CrossRefGoogle Scholar
  17. 17.
    Knowles JK, Sternberh E (1972) Arch Ration Mech Anal 44(3):187CrossRefGoogle Scholar
  18. 18.
    Cherepanov GP (1979) Mechanics of brittle fracture. Publish House “Nuaka”, Moscow, 1974, English trans published by McGraw-Hill International Book Co., New York, p. 266Google Scholar
  19. 19.
    Griffith AA (1921) Phil Trans R Soc Lond A221:163CrossRefGoogle Scholar
  20. 20.
    Lawn BR, Wilshaw TR (1975) Fracture of brittle solids. Cambridge University Press, Cambridge, p. 63Google Scholar
  21. 21.
    Xie YJ, Xu H, Li PN (1998) Theor Appl Fract Mech 29:195CrossRefGoogle Scholar
  22. 22.
    Xie YJ (1998) Int J Pres Ves Pip 75:865CrossRefGoogle Scholar
  23. 23.
    Xie YJ, Zhang X, Wang XH (2001) Int J Solids Struct 38:6953CrossRefGoogle Scholar
  24. 24.
    Xie YJ (2000) Int J Solids Struct 37:5189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringLiaoning University of Petroleum & Chemical TechnologyFushunP.R. China
  2. 2.Department of Engineering ScienceOxford UniversityOxfordUK
  3. 3.School of Mechanical EngineeringThe Western University of AustraliaPerthAustralia

Personalised recommendations