Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7824–7829 | Cite as

Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping

  • Pulickel M. Ajayan
  • Jonghwan Suhr
  • Nikhil Koratkar
Article

Abstract

Carbon nanotube reinforced polymer composites have been extensively researched [Shadler LS, Giannaris SC, Ajayan PM (1998) Appl Phys Lett 73:3842; Ajayan PM, Shadler LS, Giannaris C, Rubio A (2000) Adv Mater 12:750; Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Appl Phys Lett 72:188; Thostenson ET, Chou T-W (2002) J Phys D: Appl Phys 35:L77] for their strength and stiffness properties. The interfaces between nanotubes and polymer matrix can play a critical role in nanocomposites for their mechanical properties, since the interfacial area is order of magnitude more than traditional composites. Unless the interface is carefully engineered, poor load transfer between individual nanotubes (in bundles) and between nanotubes and surrounding polymer chains may result in interfacial slippage [Shadler et al. (1998); Ajayan et al. (2000)] and consequently disappointing mechanical stiffness and strength. Interfacial slippage, while detrimental to high stiffness and strength, could result in very high mechanical damping, which is a hugely important attribute in many commercial applications. In this paper, we show that the mechanical damping is related to frictional energy dissipation during interfacial sliding at the extremely many nanotube-polymer interfaces, and characterize the impact of activation of the frictional sliding on damping behavior.

Keywords

Storage Modulus Strain Amplitude Loss Modulus Interfacial Slip Radial Compressive Stress 

Notes

Acknowledgement

We acknowledge funding support from the US Army Research Office (Structures and Dynamics Program).

References

  1. 1.
    Shadler LS, Giannaris SC, Ajayan PM (1998) Appl Phys Lett 73:3842CrossRefGoogle Scholar
  2. 2.
    Ajayan PM, Shadler LS, Giannaris C, Rubio A (2000) Adv Mater 12:750CrossRefGoogle Scholar
  3. 3.
    Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Appl Phys Lett 72:188CrossRefGoogle Scholar
  4. 4.
    Thostenson ET, Chou T-W (2002) J Phys D: Appl Phys. 35:L77CrossRefGoogle Scholar
  5. 5.
    Fisher FT, Bradshaw RD, Brinson LC (2002) Appl Phys Lett 80:4647CrossRefGoogle Scholar
  6. 6.
    Qian D, Dickey EC, Andrew R, Rantell T (2000) Appl Phys Lett 76:2868CrossRefGoogle Scholar
  7. 7.
    Thostenson ET, Zhifeng R, Chou T-W (2001) Compos Sci Technol 61:1899CrossRefGoogle Scholar
  8. 8.
    Li F, Cheng HM, Bai S, Su G, Dresselhaus MS (2000) Appl Phys Lett 77:3161CrossRefGoogle Scholar
  9. 9.
    Barber A, Cohen S, Wagner HD (2003) Appl Phys Lett 82:4140CrossRefGoogle Scholar
  10. 10.
    Zhou X, Wang KW, Bakis CE (2003) Compos Sci Technol 64:2425CrossRefGoogle Scholar
  11. 11.
    Suhr J, Koratkar N, Keblinski P, Ajayan PM (2005) Nat Mater 4:134CrossRefGoogle Scholar
  12. 12.
    Liu A, Huang J, Wang K-W, Bakis CE (2006) J Intel Mater Syst Struct 17:217CrossRefGoogle Scholar
  13. 13.
    Rajoria H, Jalili N (2005) Compos Sci Technol 645:2079CrossRefGoogle Scholar
  14. 14.
    Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Compos Sci Technol 66:1162CrossRefGoogle Scholar
  15. 15.
    Ding W, Eitan A, Fisher F, Chen X, Dikin D, Andrews R, Brinson L, Schadler LS, Ruoff RS (2003) Nano Lett 3:1593CrossRefGoogle Scholar
  16. 16.
    Painter P, Coleman M (1997) Fundamentals of polymer science. CRC Press, New YorkGoogle Scholar
  17. 17.
    Bower C, Kleinhammes A, Wu Y, Zhou O (1998) Chem Phys Lett 288:481CrossRefGoogle Scholar
  18. 18.
    Monthioux M, Smith B, Burteaux B, Claye A, Fischer J, Luzzi DE (2001) Carbon 39:1251CrossRefGoogle Scholar
  19. 19.
    Koratkar NA, Suhr J, Joshi A, Kane RS, Schadler LS, Ajayan PM, Bartolucci S (2005) Appl Phys Lett 87:063102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Pulickel M. Ajayan
    • 1
  • Jonghwan Suhr
    • 2
  • Nikhil Koratkar
    • 2
  1. 1.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations