Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4227–4232 | Cite as

Aluminum hydroxide filled ethylene vinyl acetate (EVA) composites: effect of the interfacial compatibilizer and the particle size

  • Ling ZhangEmail author
  • Chun Zhong Li
  • Qiuling Zhou
  • Wei Shao
Article

Abstract

Ethylene vinyl acetate (EVA) copolymer was filled with aluminum hydroxide (ATH) with three different sizes of 1.8, 1.2 and 0.8 μm in various volume fractions. The effect of interfacial compatibilizer on the properties of the composites was studied by morphology observation, dynamic mechanical analysis, tensile and flame tests. The results illustrated that the incorporation of functionalized polyethylene combined with dicumyl peroxide (DCP) and the silane coupling agent led to a pronounced improvement in the tensile strength compared to the composites with ATH untreated or treated by silane coupling agent alone. It was found that good dispersion and interfacial adhesion between the ATH particles and the matrix can improve the flame properties of composites. The particle size has a great effect on the flammability of the EVA/ATH composites. ATH with smaller particle size can increase the LOI value and improve the UL-94 flammability of the composites.

Keywords

Storage Modulus Dynamic Mechanical Analysis Flammability Interfacial Adhesion Silane Coupling Agent 

Notes

Acknowledgements

The authors gratefully acknowledge National Natural Science Foundation of China (20236020), Nano-Science and Technology Foundation of Shanghai, Shanghai Basic Research Major Programme (04DZ14002) as well as Development Project of Shanghai Priority Academic Discipline for financial support.

References

  1. 1.
    Shi L, Li ZM, Yang MB, Yin B, Zhou QM, Wang JH (2005) Polym-plast Technol Eng 44:1323CrossRefGoogle Scholar
  2. 2.
    Shi L, Li ZM, Xie BH, Wang JH, Tian CR, Yang MB (2006) Polym Int 55:862CrossRefGoogle Scholar
  3. 3.
    Lu SY, Hamerton I (2002) Prog Polym Sci 27:1661CrossRefGoogle Scholar
  4. 4.
    Sen AK, Mukheriee B, Bhattacharya AS, Sanghi LK, De PP, Bhowmick K (1991) J Appl Polym Sci 43:1673CrossRefGoogle Scholar
  5. 5.
    France AD, Ferry L, Cuesta J. M. Lopez, Crespy A (2000) Polym Int 49:1101CrossRefGoogle Scholar
  6. 6.
    Camino G, Maffezzoli A, Braglia M, De Lazzaro M, Zammarano M (2001) Polym Degrad Stab 74:457CrossRefGoogle Scholar
  7. 7.
    Qiu LZ, Xie RC, Ding P, Qu BJ (2003) Compos Struct 62:391CrossRefGoogle Scholar
  8. 8.
    Li ZZ, Qu BJ (2003) Polym Degrad Stab 81:401CrossRefGoogle Scholar
  9. 9.
    Gheysari D, Behjat A (2002) Eur Polym J 38:1087CrossRefGoogle Scholar
  10. 10.
    Preston CML, Amarasinghe G, Hopewell JL, Shanks RA, Mathys Z (2002) Polym Degrad Stab 43:6707Google Scholar
  11. 11.
    Zhang XG, Guo F, Chen JF, Wang GQ, Liu H (2005) Polym Degrad Stab 87:411CrossRefGoogle Scholar
  12. 12.
    Hippi U, Mattila J, Korhonen M, Seppala J (2003) Polymer 44:1193CrossRefGoogle Scholar
  13. 13.
    Chiang WY, Hu CH (2001) Composites: Part A 32:517CrossRefGoogle Scholar
  14. 14.
    Ren DS, Wang JQ (1999) Surf Interface Anal 28:170CrossRefGoogle Scholar
  15. 15.
    Liauw CM, Lees GC, Hurst SJ, Rothon RN, Ai S (1998) Composites: Part A 29A:1313CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ling Zhang
    • 1
    Email author
  • Chun Zhong Li
    • 1
  • Qiuling Zhou
    • 1
  • Wei Shao
    • 1
  1. 1.Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiP.R. China

Personalised recommendations