Journal of Materials Science

, Volume 41, Issue 18, pp 6090–6094 | Cite as

Toughening effect of K resin on the fracture of polyamide 6/K resin blends

  • Bo Jing
  • Wen -Li DaiEmail author
  • Peng -Sheng LiuEmail author

Polyamide 6 (PA6) is a semi-crystalline thermoplastic used in a wide range of engineering applications because of its attractive combination of good processability, mechanical property and chemical resistance. However, it has high moisture absorption and low resistance to crack propagation in the presence of a notch. Polymer blending is an efficient way to improve some deficient properties of these existing polymers, therefore, blends of PA6 with polycarbonate, polyphenylene oxide and glass microbead have been studied in some details. However, blending polyolefin and rubber elastomers such as styrene/butadiene/styrene copolymers, hydrogenated styrene/butadiene triblock copolymers, and ethylene-propylene-diene rubber with PA6 are the dominating approach to obtain high-toughed polyamide 6 materials [1, 2, 3, 4, 5, 6]. Because of the low elastic modulus of rubber elastomers, this kind of materials will distinctly decrease stiffness K resin is a styrene-butadiene copolymer with high...


Charpy Impact Test Ligament Length Resin Blend Polyphenylene Oxide Single Edge Notch Tension 


  1. 1.
    Triacca VJ, Ziaee S, Barlow JW, Keskkula H, Paul DR (1991) Polymer 32:1401CrossRefGoogle Scholar
  2. 2.
    Kudva RA, Keskkula H, Paul DR (1998) ibid 39:2447Google Scholar
  3. 3.
    Oshinski AJ, Keskkula H, Paul DR (1996) ibid 37:4919Google Scholar
  4. 4.
    Kitano T, Lee YM (1999) Polymer 40:6321CrossRefGoogle Scholar
  5. 5.
    Chiang CR, Chang FC (1996) J Appl Polym Sci 61:2411CrossRefGoogle Scholar
  6. 6.
    Majumdar B, Keakkula H, Paul KR (1994) Polymer 35:1386CrossRefGoogle Scholar
  7. 7.
    Bourry D, Favis BD (1995) Society Plastics Engineers Technical Papers 41:2001Google Scholar
  8. 8.
    Wu J, Mai Y-W (1996) Polym Eng Sci 36:2275CrossRefGoogle Scholar
  9. 9.
    Karger-Kocsis J (1996) Polym Bull 37:119CrossRefGoogle Scholar
  10. 10.
    Karger-Kocsis J, Czigany T (1996) Polymer 37:2433CrossRefGoogle Scholar
  11. 11.
    Karger-Kocsis J, Czigany T, Moskala EJ (1997) Polymer 38:4587CrossRefGoogle Scholar
  12. 12.
    Karger-Kocsis J, Czigany T, Moskala EJ (1998) Polymer 39:3939CrossRefGoogle Scholar
  13. 13.
    Mouzakis DE, Stricker F, Karger-Kocsis J (1998) J Mater Sci 33:2551CrossRefGoogle Scholar
  14. 14.
    Arencon D, Velasco JI (2001) J Mater Sci 36:179CrossRefGoogle Scholar
  15. 15.
    Szabó P, Epacher E, Oföldes E (2004) Mater Sci Eng A 383:307CrossRefGoogle Scholar
  16. 16.
    Kelnar I, Fortelny I, Baldrian J (1992) Plast Rubber Compos Process Appl 18:109Google Scholar
  17. 17.
    Lee MP, Hiltner A, Baer E (1992) Polymer 33:685CrossRefGoogle Scholar
  18. 18.
    Wnuk WP, Read DT (1986) Int J Fract 31:161CrossRefGoogle Scholar
  19. 19.
    Paton CA, Hashemi S (1992) J Mater Sci 27:2279CrossRefGoogle Scholar
  20. 20.
    Marchal Y, Delannay F (1998) Mater Sci Tech 14:1163CrossRefGoogle Scholar
  21. 21.
    Adhikari R, Lach R, Michler GH (2002) Polymer 43:1943CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Institute of Polymer Science, College of ChemistryXiangtan UniversityXiangtanPeople’s Republic of China

Personalised recommendations