Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4451–4460 | Cite as

Preparation of UV-curable intercalated/exfoliated epoxide/acrylateclays nanocomposite resins

  • Yu-Young Wang
  • Tsung-Eong HsiehEmail author
Article

Abstract

Preparation of UV-curable intercalated/exfoliated epoxide/acrylateclays nanocomposite resins with the addition of specific monomers and solvent via the consideration of solubility parameter and chemical reactivity was carried out in this work. Due to the good compatibility with surfactant in acrylateclays and the cationic oligomer in resin matrix, the two additive monomers dispersed uniformly in resin matrix with the swollen acrylateclays before UV curing. As revealed by conversion ratio and DTG analyses, chemical bonds between the two additive monomers, the cationic oligomers and surfactant in acrylateclays were formed during UV irradiation. This, in turn, generated a hybrid acrylate-based/epoxy network and effectively enlarged the lamellae spacing of inorganic clays in nanocomposite resins prepared in this work. The XRD and TEM characterizations revealed that the intercalated clay domains containing exfoliated lamellae about 1 nm in thickness uniformly disperse in polymeric matrix. The nanocomposite resin containing 5 wt.% inorganic filler possessed the physical properties as follows: Td-5% = 213 °C, CTE = 80.5 ppm/°C, moisture absorption = 6.12%, average optical transmittance = 83.17%, and adhesion strength on glass substrate = 43.8 kgf/cm2. The analyses above indicated that the formation of polymeric interpenetrating networks and nanometer-scale exfoliation of clay lamellae not only improve the thermal properties and resistance to moisture permeation, but also retain highly optical transmittance and satisfactory adhesion strength of nanocomposite resins prepared in this work. A better device lifetime property was hence achieved when the nanocomposite resins were applied to the packaging of OLEDs.

Keywords

Adhesion Strength Conversion Ratio Solubility Parameter Resin Matrix Resin Sample 

Notes

Acknowledgements

This work was supported by the Ministry of Education, Taiwan, Republic of China within the Project of Excellence “Semiconducting Polymers and Organic Molecules for Electroluminescence: B. Development of Advanced Materials and Devices for Organic Light Emitting Diodes (OLED) Technology” under contract No. 91-E-FA04-2-4. The authors are also grateful to Dr. Chia-Hung Hsu at NSRRC, Taiwan, for the assistance and discussion on GIXRD measurements.

References

  1. 1.
    Nagata H, Shiroishi M, Miyama Y, Mitsugi N, Miyamoto N (1995) Opt Fib Tech 1:283CrossRefGoogle Scholar
  2. 2.
    Baikerikar KK, Scranton AB (2001) Polym 42:431CrossRefGoogle Scholar
  3. 3.
    Chou YC, Wang YY, Hsieh TE, J Appl Polym Sci (accepted)Google Scholar
  4. 4.
    Wang YY, Hsieh TE, IEEE Trans Adv Package (accepted)Google Scholar
  5. 5.
    Decker C, Zahouily K, Keller L, Benfarhi S, Bendaikha T (2002) J Mater Sci 37:4831CrossRefGoogle Scholar
  6. 6.
    Keller L, Decker C, Zahouily K, Benfarhi S, Le Meins JM, Miehe-Brendle J (2004) Polym 45:7437CrossRefGoogle Scholar
  7. 7.
    Shemper BS, Morizur JF, Alirol M, Domenech A, Hulin V, Mathias LJ (2004) J Appl Polym Sci 93:1252CrossRefGoogle Scholar
  8. 8.
    Benfarhi S, Decker C, Keller L, Zahouily K (2004) Eur Polym J 40:493CrossRefGoogle Scholar
  9. 9.
    Uhl FM, Davuluri SP, Wong SC, Webster DC (2004) Polym 45:6175CrossRefGoogle Scholar
  10. 10.
    Wang YY, Hsieh TE (2005) Chem Mater 17:3331CrossRefGoogle Scholar
  11. 11.
    Chiang TH, Hsieh TE (2005) J Adhes Sci Tech 1:1CrossRefGoogle Scholar
  12. 12.
    Decker C, Nguyen Thi Viet T, Decker D, Weber-Koehl E (2001) Polym 42:5531CrossRefGoogle Scholar
  13. 13.
    Sui G, Zhang ZG, Chen CQ, Zhong WH (2002) Mater Chem Phys 78:349CrossRefGoogle Scholar
  14. 14.
    Jana RN, Mukunda PG, Nando GB (2003) Polym Degrad Stab 80:75CrossRefGoogle Scholar
  15. 15.
    Remiro PM, Cortazar M, Calahorra E, Calafel MM (2002) Polym Degrad Stab 78:83CrossRefGoogle Scholar
  16. 16.
    Basfer AA (2002) Polym Degrad Stab 77:221CrossRefGoogle Scholar
  17. 17.
    Crivello JV, Varlemann U (1995) J Polym Sci 33:2473CrossRefGoogle Scholar
  18. 18.
    Wen J, Wikes GL (1996) Chem Mater 8:1667CrossRefGoogle Scholar
  19. 19.
    Fischer HR, Gielgens LH, Koster TPM (1999) Acta Polym 50:122CrossRefGoogle Scholar
  20. 20.
    Petrović ZS, Javni I, Waddon A, Bánhegyi G (2000) J Appl Polym Sci 76:133CrossRefGoogle Scholar
  21. 21.
    Zhu ZK, Yang Y, Yin J, Wang XY, Ke YC, Qi ZN (1999) J Appl Polym Sci 73:2063CrossRefGoogle Scholar
  22. 22.
    Burnside SD, Giannelis EP (1995) Chem Mater 7:1597CrossRefGoogle Scholar
  23. 23.
    Fu X, Qutubuddin S (2001) Polym 42:807CrossRefGoogle Scholar
  24. 24.
    Lee DK, Char KK (2002) Polym Degrad Stab 75:555CrossRefGoogle Scholar
  25. 25.
    Laubender J, Chkoda L, Sokolowski M, Umbach E (2000) Synth Met 111–112:373CrossRefGoogle Scholar
  26. 26.
    Yano K, Usuki A, Okada A, Kurauchi T, Kamigatio O (1993) J Polym Sci A Polym Chem 31:2493CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations