Journal of Materials Science

, Volume 41, Issue 18, pp 6095–6099 | Cite as

Fabrication, thermal expansions, and mechanical properties of carbon/aluminum composites based on wood templates

  • Tian-Chi Wang
  • Tong-Xiang Fan
  • Di ZhangEmail author
  • Guo-Ding Zhang


Usually, the shape, the size, and the distribution of the components in metal matrix composites depend on the artificial fabrication processes. However, the technique of fabricating materials with desired and delicate microstructures is still not simplified and easy. Wood, after hundreds of millions of years of evolution, possesses rational and graceful microstructures that cannot be obtained artificially. It can be considered as a natural composite material with a hierarchical architecture, where cellulose, hemicellulose, and lignin form cellular microstructures [1, 2]. In wood structures, there exists large number of channels made up of cells. Through these channel-structures, water and mineral elements can be transported to every part of the tree. Moreover, it should be noted that a huge tree is capable of maintaining its position in the wind on its thin trunk for hundreds of years. This is possible due to its high strength, modulus, and stiffness [3, 4, 5]. These...


Porous Carbon Compressive Residual Stress Compression Strength Molten Aluminum Alloy Thick Channel 



The authors wish to express thanks to the financial support of the National Natural Science Foundation of China (No. 50271041), “863” Program (No. 2002AA334030), Basic Research Program of Shanghai (No. 04DZ14002), Key Basic Research Program of Shanghai (No. 03JC14044).


  1. 1.
    Mark JE, Calvert PD (1994) Mat Sci Eng C 1:159CrossRefGoogle Scholar
  2. 2.
    Greil P, Lifka T, Kaindl A (1998) J Eur Ceram Soc 18:1975CrossRefGoogle Scholar
  3. 3.
    Ashby MF, Easterling KE, Harrysson R, Maiti SK (1985) Proc Roy Soc London A 398:261CrossRefGoogle Scholar
  4. 4.
    Ashby MF (1989) Acta Metall 37:1273CrossRefGoogle Scholar
  5. 5.
    Ashby MF (1991) Acta Metall 39:1025CrossRefGoogle Scholar
  6. 6.
    Ehrburger P, Lahaye J, Wozniak E (1982) Carbon 20:433CrossRefGoogle Scholar
  7. 7.
    Patel M, Karera A, Prasanna P (1987) J Mater Sci 22:2457CrossRefGoogle Scholar
  8. 8.
    Sun BH, Fan TX, Zhang D, Okabe T (2004) Carbon 42:177CrossRefGoogle Scholar
  9. 9.
    Fan TX, Hirose T, Okabe T, Zhang D (2001) J Porous Mater 8:211CrossRefGoogle Scholar
  10. 10.
    Qiao WM, Korai Y, Mochida I, Hori Y, Macda T (2002) Carbon 40:351CrossRefGoogle Scholar
  11. 11.
    Hokkirigawa K, Okabe T, Saito K (1995) J Soc Mater Sci, Jpn 44:794CrossRefGoogle Scholar
  12. 12.
    Okabe T, Saito K, Togawa H (1995) J Soc Mater Sci, Jpn 44:288CrossRefGoogle Scholar
  13. 13.
    Okabe T, Saito K (1994) Advanced Materials ‘93, V/A: Ecomaterials, Japan, p 681Google Scholar
  14. 14.
    Martinez MA, Martin A, Llorca J (1993) Scripta Metall Mater 28:207CrossRefGoogle Scholar
  15. 15.
    Somi RA, Pramila BN, Murthy KS, Biswas SK (1994) Wear 171:115CrossRefGoogle Scholar
  16. 16.
    Gibson PR, Clegg AJ, Das A (1984) Wear 95:193CrossRefGoogle Scholar
  17. 17.
    Das S, Prasad SV, Ramachandran TR (1989) Wear 133:173CrossRefGoogle Scholar
  18. 18.
    Xie XQ, Zhang D, Fan TX, Sakata T, Mori H, Okabe T, Hirose T (2002) Mater Lett 56:102CrossRefGoogle Scholar
  19. 19.
    Wang TC, Fan TX, Zhang D, Zhang GD (2005) Mater Trans 46:1741CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Tian-Chi Wang
    • 1
  • Tong-Xiang Fan
    • 1
  • Di Zhang
    • 1
    Email author
  • Guo-Ding Zhang
    • 1
  1. 1.State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiP.R. China

Personalised recommendations