Advertisement

Journal of Materials Science

, Volume 41, Issue 19, pp 6481–6484 | Cite as

Ultrafast nonresonant third-order optical nonlinearity of the 0.64GeS2–0.16Ga2S3–0.2CsCl chalcohalide glass

  • Hai Zheng Tao
  • Chang Gui Lin
  • Hai Yan Xiao
  • Zhen Wei Wang
  • Sai Sai Chu
  • Shu Feng Wang
  • Xiu Jian Zhao
  • Qi Huang Gong
Letter

Over the last few years, great efforts have been made about the research and development of highly nonlinear optical materials for applications such as all-optical switching devices in the optical telecommunication field. In particular, among the materials available to date, chalcogenide glasses are emerging as the promising candidates for future compact and high efficiency all-optical switching devices due to their large electronic nonlinear refractive indices and high abilities to drawing fibers with them [1, 2, 3, 4, 5]. Early in 1992 Masaki et al. have demonstrated that ultrafast all-optical switching with 14 W of switching power can be realized utilizing an only 48-cm long single-mode As2S3-based glass fiber according to an optical Kerr shutter configuration [6]. And the large nonlinear refractive index (n2) of the As2S3-based glass, which was estimated to be 4 × 10−14 cm2/W, two orders larger than that of silica glass fibers, has been confirmed by switching characteristics....

Keywords

Ga2S3 Pump Beam Chalcogenide Glass GeS2 Nonlinear Refractive Index 

Notes

Acknowledgments

This work was partially funded by the National Natural Science Foundation of China (No. 50125205) and the Opening Fund of Key Laboratory of Silicate Materials Science and Engineering (Wuhan University of Technology) Ministry of Education (No. SYSJJ2004-14).

References

  1. 1.
    Jha A, Liu X, Kar AK, Bookey HT (2001) Curr Opin Solid St M 5:475CrossRefGoogle Scholar
  2. 2.
    Lucas J (1999) Curr Opin Solid St M 4:181CrossRefGoogle Scholar
  3. 3.
    Tanaka K (2005) J Mater Sci Mater El 16:633CrossRefGoogle Scholar
  4. 4.
    Zakery A, Elliott SR (2003) J Non-Cryst Solids 330:1CrossRefGoogle Scholar
  5. 5.
    Kanbara H, Fujiwara S, Tanaka K, Nasu H, Hirao K (1997) Appl Phys Lett 70:925CrossRefGoogle Scholar
  6. 6.
    Asobe M, Kanamori T, Kubodera K (1993) IEEE J Quantum Elect 29:2325CrossRefGoogle Scholar
  7. 7.
    Tikhomirov VK, Tikhomirova SA (2001) J Non-Cryst Solids 284:193CrossRefGoogle Scholar
  8. 8.
    Bindra KS, Bookey HT, Kar AK, Wherrett BS, Liu X, Jha A (2001) Appl Phys Lett 79:1939CrossRefGoogle Scholar
  9. 9.
    Tao HZ, Dong GP, Zhai YB, Guo HT, Zhao XJ, Wang ZW, Chu SS, Wang SF, Gong QH (2006) Solid State Commun 138:485CrossRefGoogle Scholar
  10. 10.
    Tao HZ, Zhao XJ, Jing CB (2004) J Mol Struct 697:23CrossRefGoogle Scholar
  11. 11.
    Tao HZ, Zhao XJ, Jing CB, Yang H, Mao S (2005) Solid State Commun 133:327CrossRefGoogle Scholar
  12. 12.
    Tao HZ, Mao S, Dong GP, Xiao HY, Zhao XJ (2006) Solid state Commun 137:408CrossRefGoogle Scholar
  13. 13.
    Tao HZ, Zhao XJ, Tong W, Mao S (2006) Spectrochim Acta A 64:1039CrossRefGoogle Scholar
  14. 14.
    Tao HZ, Mao S, Tong W, Zhao XJ (2006) Mater Lett 60:741CrossRefGoogle Scholar
  15. 15.
    Bredas JL, Adant C, Tackx P, Persoons A (1994) Chem Rev 94:243CrossRefGoogle Scholar
  16. 16.
    Minoshima K, Taiji M, Kobayashi T (1991) Opt Lett 16:1683CrossRefGoogle Scholar
  17. 17.
    Halbout JM, Tang CL (1982) Appl Phys Lett 40:765CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Hai Zheng Tao
    • 1
  • Chang Gui Lin
    • 1
  • Hai Yan Xiao
    • 1
  • Zhen Wei Wang
    • 2
  • Sai Sai Chu
    • 2
  • Shu Feng Wang
    • 2
  • Xiu Jian Zhao
    • 1
  • Qi Huang Gong
    • 2
  1. 1.Key Laboratory of Silicate Materials Science and Engineering (Wuhan University of Technology), Ministry of EducationWuhan, HubeiPR China
  2. 2.Department of Physics & State Key Laboratory for Mesoscopic PhysicsPeking UniversityBeijing PR China

Personalised recommendations