Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7691–7695 | Cite as

Grain boundary order-disorder transitions

  • Ming Tang
  • W. Craig Carter
  • Rowland M. Cannon
Article

Abstract

The conditions for grain boundary (GB) structural transitions are determined from a diffuse interface model that incorporates structural disorder and crystallographic orientation. A graphical construction and numerical calculations illustrate the existence of a first-order GB order–disorder transition below the bulk melting point. When thermodynamic conditions permit their existence, disordered GB structures tend to be stable at higher temperatures and are perfectly wet by liquid at the melting point, while ordered grain boundaries are meta-stable against preferential melting. We calculate GB phase diagrams which are analogous to those for liquid–vapor phase transitions.

Keywords

Grain Boundary Excess Free Energy Disorder Transition Coexistence Curve Spinodal Line 

Notes

Acknowledgements

Discussions with Yet-Ming Chiang and Jian Luo are gratefully acknowledged.

References

  1. 1.
    Frenken JWM, van der Veen JF (1985). Phys Rev Lett 54:134CrossRefGoogle Scholar
  2. 2.
    Frenken JWM, Maree PMJ, van der Veen JF (1986) Phys Rev B 34:7506CrossRefGoogle Scholar
  3. 3.
    Dash JG (1989) Cont Phys 30:89CrossRefGoogle Scholar
  4. 4.
    Gleiter H (1970) Z Metallkd 61:282Google Scholar
  5. 5.
    Demianczuk DW, Aust KT (1975) Acta Metall 23:1149CrossRefGoogle Scholar
  6. 6.
    Watanabe T, Kimura SI, Karashima S (1984) Phil Mag A 49:845CrossRefGoogle Scholar
  7. 7.
    Maksimova EL, Shvindlerman LS, Straumal BB (1988) Acta Metall 36:1573CrossRefGoogle Scholar
  8. 8.
    Divinski S, Lohmann M, Herzig C, Straumal B, Baretzky B, Gust W (2005) Phys Rev B 71: art.no. 104104Google Scholar
  9. 9.
    Hsieh T, Balluffi R (1989) Acta Metall 37:1637CrossRefGoogle Scholar
  10. 10.
    Alsayed A, Islam MF, Zhang J, Collings PJ, Yodh AG (2005) Science 309:1207CrossRefGoogle Scholar
  11. 11.
    Luo J, Gupta VK, Yoon DH, Meyer HM (2005) App Phys Lett 87: art.no. 231902Google Scholar
  12. 12.
    Kikuchi R, Cahn JW (1980) Phys Rev B 21:1893CrossRefGoogle Scholar
  13. 13.
    Kikuchi R, Cahn JW (1987) Phys Rev B 36:418CrossRefGoogle Scholar
  14. 14.
    Broughton JQ, Gilmer GH (1986) Phys Rev Lett 56:2692CrossRefGoogle Scholar
  15. 15.
    Ciccotti G, Guillope M, Pontikis V (1983) Phys Rev B 27:5576CrossRefGoogle Scholar
  16. 16.
    Nguyen T, Ho PS, Kwok T, Nitta C, Yip S (1986) Phys Rev Lett 57:1919CrossRefGoogle Scholar
  17. 17.
    Deymier P, Taiwo A, Kalonji GM (1987) Acta Metall 35:2719CrossRefGoogle Scholar
  18. 18.
    Phillpot SR, Lutsko JF, Wolf D, Yip S (1989) Phys Rev B 40:2831CrossRefGoogle Scholar
  19. 19.
    Lutsko JF, Wolf D, Phillpot SR, Yip S (1989) Phys Rev B 40:2841CrossRefGoogle Scholar
  20. 20.
    Nguyen T, Ho PS, Kwok T, Nitta C, Yip S (1992) Phys Rev B 46:6050CrossRefGoogle Scholar
  21. 21.
    Keblinski P, Phillpot SR, Wolf D, Gleiter H (1997) Philos Mag Lett 76:143CrossRefGoogle Scholar
  22. 22.
    Besold G, Mouritsen OG (1994) Phys Rev B 50:6573CrossRefGoogle Scholar
  23. 23.
    Besold G, Mouritsen OG (2000) Comp Mat Sci 18:225CrossRefGoogle Scholar
  24. 24.
    Kobayashi R, Warren JA, Carter WC (2000) Physica D 140:141CrossRefGoogle Scholar
  25. 25.
    Warren J, Kobayashi R, Lobkovsky A, Carter W (2003) Acta Mater 51:6035CrossRefGoogle Scholar
  26. 26.
    Tang M, Carter WC, Cannon RM (2006) Phys Rev B 73:024102CrossRefGoogle Scholar
  27. 27.
    Kobayashiand R, Giga Y (1999) J Stat Phys 95:1187CrossRefGoogle Scholar
  28. 28.
    Cahn JW (1997) J Chem Phys 66:3667CrossRefGoogle Scholar
  29. 29.
    Tang M, Carter WC, Cannon RM (2006) Phys Rev Lett 97:075502CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Ming Tang
    • 1
  • W. Craig Carter
    • 1
  • Rowland M. Cannon
    • 2
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations