Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7862–7871 | Cite as

Superfast densification of nanocrystalline oxide powders by spark plasma sintering

  • R. Chaim
Article

Abstract

Spark plasma sintering (SPS) is a newly discovered old technique which recently has been used for superfast densification of ceramic powders. Simultaneous application of pulsed high dc current densities and load is the necessary condition for rapid and full densification of ceramic powders by SPS. Commercial nanocrystalline magnesium oxide (nc-MgO) and yttrium aluminum garnet (nc-YAG) powders were densified to optical transparency using spark plasma sintering at distinctly different homologous temperatures (0.3 Tm for nc-MgO and 0.7 Tm for nc-YAG). The observed microstructure, density and grain size evolutions versus the SPS temperature were analyzed. The enhanced densification of the nc-MgO powder at the present SPS conditions was related to plastic deformation followed by diffusion processes. Densification of nc-YAG powder was described by the formation of viscous layer at the particle surfaces and corresponding densification by grain rotation and diffusion through the liquid phase. Densification by normal grain growth takes place at higher relative densities, regardless of the material.

Keywords

Spark Plasma Sinter Densification Mechanism High Relative Density Spark Plasma Sinter Process Full Densification 

Notes

Acknowledgements

Financial support of the Israel Ministry of Defense is gratefully acknowledged. Dr James Shen from Stockholm University is gratefully acknowledged for preparing the samples. I thank Dr Richard Ghez from Technion for the fruitful discussions.

References

  1. 1.
    Groza JR, Risbud SH, Yamazaki K (1992) J Mater Res 7:2643CrossRefGoogle Scholar
  2. 2.
    Mishra RS, Risbud SH, Mukherjee AK (1998) J Mater Res 13:86CrossRefGoogle Scholar
  3. 3.
    Nygren M, Shen Z (2003) Solid State Sci 5:125CrossRefGoogle Scholar
  4. 4.
    Ichikawa K, Murakami T, Nakayama Y, Miyamato S, Tokita M (2003) Mater Sci Forum 426:2375CrossRefGoogle Scholar
  5. 5.
    Chaim R, Shen Z, Nygren M (2004) J Mater Res 19:2527CrossRefGoogle Scholar
  6. 6.
    Liu W, Naka M (2003) Scripta mater 48:1225CrossRefGoogle Scholar
  7. 7.
    Hun Kim K, Bo Shim K (2003) Mater Character 50:31CrossRefGoogle Scholar
  8. 8.
    Zhan G-D, Kuntz J, Wan J, Garay J, Mukherjee AK (2003) Mater Sci Eng A 356:443CrossRefGoogle Scholar
  9. 9.
    Jun Wu Y, Uekawa N, Kakegawa K (2003) Mater Lett 57:4088CrossRefGoogle Scholar
  10. 10.
    Wang SW, Chen LD, Hirai T, Kang YS (1999) J Mater Sci Lett 18:1119CrossRefGoogle Scholar
  11. 11.
    Groza JR, Garcia M, Schneider JA (2001) J Mater Res 16:286CrossRefGoogle Scholar
  12. 12.
    Krell A, Van Bruggen MPB (2004) Bull ECerS 2:35Google Scholar
  13. 13.
    Keum YT, Jeon JH, Auh KH (2002) J Ceram Proc Res 3:195Google Scholar
  14. 14.
    Matsugi K, Kuramoto H, Hatayama T, Yanagisawa O (2004) J Mater Proc Tech 146:274CrossRefGoogle Scholar
  15. 15.
    Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005) Mater Sci Eng A 394:139CrossRefGoogle Scholar
  16. 16.
    Vanmeensel K, Laptev A, Hennicke J, Vleugels J, Van Der Biest O (2005) Acta Mater 53:4279CrossRefGoogle Scholar
  17. 17.
    Wang SW, Chen LD, Hirai T (2000) J Mater Res 15:982CrossRefGoogle Scholar
  18. 18.
    Takeuchi T, Tabuchi M, Kondoh I, Tamari N, Kageyama H (2000) J Am Ceram Soc 83:541CrossRefGoogle Scholar
  19. 19.
    Nordine PC, Weber RJK, Abadie JG (2000) Pure Appl Chem 72:2127CrossRefGoogle Scholar
  20. 20.
    Haslam AJ, Moldovan D, Yamakov V, Wolf D, Phillpot SR, Gleiter H (2003) Acta Mater 51:2097CrossRefGoogle Scholar
  21. 21.
    Vieira JM, Brook RJ (1984) J Am Ceram Soc 67:450CrossRefGoogle Scholar
  22. 22.
    Itatani K, Yasuda R, Scott Howell F, Kishioka A (1997) J Mater Sci 32:2977CrossRefGoogle Scholar
  23. 23.
    Feng Y, Agrawal D, Skandan G, Jain M (2004) Mater Lett 58:551CrossRefGoogle Scholar
  24. 24.
    Ehre D, Gutmanas EY, Chaim R (2005) J Eur Ceram Soc 25:3579CrossRefGoogle Scholar
  25. 25.
    Chaim R, Margulis M (2005) Mater Sci Eng A 407:180CrossRefGoogle Scholar
  26. 26.
    Corman GS (1993) J Mater Sci Lett 12:379CrossRefGoogle Scholar
  27. 27.
    Blumenthal WR, Philips DS (1996) J Am Ceram Soc 79:1047CrossRefGoogle Scholar
  28. 28.
    Hay RS (1994) J Am Ceram Soc 77:1473CrossRefGoogle Scholar
  29. 29.
    King BH, Halloran JW (1995) J Am Ceram Soc 78:2141CrossRefGoogle Scholar
  30. 30.
    Jimenez-Melendo M, Haneda H, Nozawa H (2001) J Am Ceram Soc 84:2356CrossRefGoogle Scholar
  31. 31.
    Cherniak DJ (1998) Phys Chem Minerals 26:156CrossRefGoogle Scholar
  32. 32.
    Parthasarathy TA, Mah T-I, Keller K (1992) J Am Ceram Soc 75:1756CrossRefGoogle Scholar
  33. 33.
    Rahaman MN (2003) In: Ceramic processing and sintering. Marcel Dekker Inc., New York, p 603Google Scholar
  34. 34.
    Ashby MF, Verall RA (1973) Acta Metall 21:149CrossRefGoogle Scholar
  35. 35.
    Markhsev O, Chaim R (2003) J Mater Res 18:950CrossRefGoogle Scholar
  36. 36.
    Chaim R (1997) J Mater Res 12:1828CrossRefGoogle Scholar
  37. 37.
    Fratello VJ, Brandle CD (1993) J Cryst Growth 128:1006CrossRefGoogle Scholar
  38. 38.
    Kingery WD, Bowen HK, Uhlmann DR (1976) In: Introduction to ceramics. John Wiley & Sons, New York, p 208Google Scholar
  39. 39.
    Weber RJK, Felten JJ, Cho B, Nordine PC (1998) Nature 393:769CrossRefGoogle Scholar
  40. 40.
    Tangeman JA, Phillips BL, Nordine PC, Weber RJK (2004) J Phys Chem B 108:10663CrossRefGoogle Scholar
  41. 41.
    Aasland S, Mcmillan PF (1994) Nature 369:633CrossRefGoogle Scholar
  42. 42.
    Geravais M, Le Floch S, Rifflet JC, Coutures J, Coutures JP (1992) J Am Ceram Soc 75:3166CrossRefGoogle Scholar
  43. 43.
    Finocchi F, Goniakowski J, Noguera C (1999) Phys Rev B 59:5178CrossRefGoogle Scholar
  44. 44.
    Xu Y-N, Ching WY (1999) Phys Rev B 59:10530CrossRefGoogle Scholar
  45. 45.
    Ji S, Martignole J (1996) J Struct Geol 18:1375CrossRefGoogle Scholar
  46. 46.
    Shen Z, Johnsson M, Zhao Z, Nygren M (2002) J Am Ceram Soc 85:1921CrossRefGoogle Scholar
  47. 47.
    Zhou Y, Hirao K, Yamauchi Y, Kanzaki S (2003) Scripta Mater 48:1631CrossRefGoogle Scholar
  48. 48.
    Khor KA, Yu LG, Murakoshi Y (2005) J Eur Ceram Soc 25:1057CrossRefGoogle Scholar
  49. 49.
    Buchanan RC (1986) In: Buchanan RC (ed) Ceramic materials in electronics. Marcel Dekker, Inc., New York, p 47Google Scholar
  50. 50.
    Gao L, Shen Z, Miyamoto H, Nygren M (1999) J Am Ceram Soc 82:1061CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Materials EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations