Journal of Materials Science

, Volume 42, Issue 10, pp 3338–3342 | Cite as

Hydriding properties of the nanocomposite 85 wt.% Mg–15 wt.% Mg2Ni0.8Co0.2 obtained by ball milling

  • Maria Khrussanova
  • Tsveta Mandzhukova
  • Eli Grigorova
  • Mitko Khristov
  • Pavel PeshevEmail author
Size-Dependent Effects


The hydrogen sorption properties of the nanocomposite 85 wt.% Mg–15 wt.% Mg2Ni0.8Co0.2 obtained by mechanical alloying in inert atmosphere were investigated. Absorption measurements were performed under a hydrogen pressure P = 1 MPa at temperartures ranging from 373 to 573 K, while desorption studies proceeded at P = 0.15 MPa and temperatures of 573 and 553 K. The addition of the intermetallic compound Mg2Ni0.8Co00.2 was shown to improve the hydriding kinetics of magnesium. The composite exhibited a high hydrogen capacity which did not decrease even after a large number of absorption–desorption cycles. Comparison of the hydriding kinetics of the intermetallic compounds Mg2Ni and Mg2Ni0.8Co0.2 indicated facilitation of the process by the presence of cobalt in the alloy. Magnetic measurement data on Mg2Ni0.8Co0.2 showed formation of superparamagnetic precipitations of nickel and cobalt playing the role of active centres for dissociative chemisorption of hydrogen. The behaviour of the composite was explained by the catalytic effect of the intermetallic Mg2Ni0.8Co00.2, the existence of Ni and Co clusters on the surface and the process of mechanical alloying.


Intermetallic Compound Mechanical Alloy Hydrogen Storage Desorption Cycle Dissociative Chemisorption 



Thanks are due to Dr. E. Zhecheva for her help in magnetic measurements. The financial support of the National Fund of Scientific Investigations of Bulgaria under Contract No X-1407/2004 is highly appreciated.


  1. 1.
    Ivanov EYu, Konstanchuk IG, Stepanov AA, Boldyrev VV (1986) Dokl Akad Nauk SSSR 286:385Google Scholar
  2. 2.
    Bobet J-L, Akiba E, Darriet B (2001) Int J Hydrogen Energy 26:493CrossRefGoogle Scholar
  3. 3.
    Zaluska A, Zaluski L, Ström-Olsen JO (2001) Appl Phys A, Mater Sci Proc 72:157CrossRefGoogle Scholar
  4. 4.
    Khrussanova M, Terzieva M, Peshev P, Konstanchuk I, Ivanov E (1989) Z Phys Chem (NF) 164:1261CrossRefGoogle Scholar
  5. 5.
    Khrussanova M, Terzieva M, Peshev P (1990) Int J Hydrogen Energy 15:799CrossRefGoogle Scholar
  6. 6.
    Bobet J-L, Akiba E, Nakamura Y, Darriet B (2000) Int J Hydrogen Energy 25:987CrossRefGoogle Scholar
  7. 7.
    Oelerich W, Klassen T, Bormann R (2001) J Alloys Comp 315:37CrossRefGoogle Scholar
  8. 8.
    Terzieva M, Khrussanova M, Peshev P, Radev D (1995) Int J Hydrogen Energy 20:53CrossRefGoogle Scholar
  9. 9.
    Sai Raman SS, Davidson DJ, Srivastava ON (1999) J Alloys Comp 292:202CrossRefGoogle Scholar
  10. 10.
    Khrussanova M, Bobet J-L, Terzieva M, Chevalier B, Radev D, Peshev P, Darriet B (2000) J Alloys Comp 307:283CrossRefGoogle Scholar
  11. 11.
    Bobet J-L, Grigorova E, Khrussanova M, Khristov M, Peshev P (2002) J Alloys Comp 345:280CrossRefGoogle Scholar
  12. 12.
    Khrussanova M, Grigorova E, Bobet J-L, Khristov M, Peshev P (2004) J Alloys Comp 365:308CrossRefGoogle Scholar
  13. 13.
    Tanguy B, Soubeyroux JL, Pezat M, Portier J, Hagenmuller P (1976) Mater Res Bull 11:1441CrossRefGoogle Scholar
  14. 14.
    Darnaudery JP, Darriet B, Pezat M (1983) Int J Hydrogen Energy 8:705CrossRefGoogle Scholar
  15. 15.
    Dehouche Z, Klassen T, Oelerich W, Goyette J, Bose TK, Schulz R (2002) J Alloys Comp 347:319CrossRefGoogle Scholar
  16. 16.
    Grigorova E, Khristov M, Khrussanova M, Bobet J-L, Peshev P (2005) Int J Hydrogen Energy 30:1099CrossRefGoogle Scholar
  17. 17.
    Siegmann HC, Schlapbach L, Brundle CR (1978) Phys Rev Lett 40:972CrossRefGoogle Scholar
  18. 18.
    Schlapbach L, Shaltiel D, Oelhafen P (1979) Mater Res Bull 14:1235CrossRefGoogle Scholar
  19. 19.
    Stucki F, Schlapbach L (1980) J Less-Common Met 74:143CrossRefGoogle Scholar
  20. 20.
    Khrussanova M, Zhecheva E, Stoyanova R, Peshev P, Darriet B, Chambon M (1993) Mater Res Bull 28:377CrossRefGoogle Scholar
  21. 21.
    Lim SH, Lee JY (1983) Int J Hydrogen Energy 8:369CrossRefGoogle Scholar
  22. 22.
    Song MY, Lee JY (1983) Int J Hydrogen Energy 8:363CrossRefGoogle Scholar
  23. 23.
    Boudart M, Delbouille A, Derouane EG, Indovina V, Walters AB (1972) J Am Chem Soc 94:6622CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Maria Khrussanova
    • 1
  • Tsveta Mandzhukova
    • 1
  • Eli Grigorova
    • 1
  • Mitko Khristov
    • 1
  • Pavel Peshev
    • 1
    Email author
  1. 1.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations